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Abstract. Due to their ability to handle discontinuous images while having a well-understood behavior,
regularizations with total variation (TV) and total generalized variation (TGV) are some of the best-
known methods in image denoising. However, like other variational models including a fidelity term, they
crucially depend on the choice of their tuning parameters. A remedy is to choose these automatically
through multilevel approaches, for example by optimizing performance on noisy/clean image pairs. In
this work, we consider such methods with space-dependent parameters which are piecewise constant on
dyadic grids, with the grid itself being part of the minimization. We prove existence of minimizers for
fixed discontinuous parameters under mild assumptions on the data, which lead to existence of finite
optimal partitions. We further establish that these assumptions are equivalent to the commonly used
box constraints on the parameters. On the numerical side, we consider a simple subdivision scheme
for optimal partitions built on top of any other bilevel optimization method for scalar parameters, and
demonstrate its improved performance on some representative test images when compared with constant
optimized parameters.

Contents

1. Introduction 2
2. Glossary 9
3. Analysis of the Weighted-TV learning scheme (LS)TVω 11
3.1. On Level 3 11
3.2. On Level 2 12
3.3. On Level 1 14
3.4. Stopping Criteria and Box Constraint 15
4. Analysis of the Regularized Weighted-TV and Weighted-Fidelity learning schemes (LS)TVωε

and (LS)TV−Fidω 20
4.1. The (LS)TVωε learning scheme 20
4.2. The (LS)TV−Fidω learning scheme 21
5. Analysis of the Weighted-TGV learning scheme (LS)TGVω 22
5.1. On Level 3 22
5.2. On Level 2 23
5.3. On Level 1 27
5.4. Stopping criteria and box constraint for TGV 30
5.5. The (LS)TGV−Fidω learning scheme 36
6. Numerical Treatment and Comparison of the learning schemes (LS)TVω , (LS)TVωε ,

(LS)TV−Fidω , and (LS)TGV−Fidω 37
6.1. Common numerical framework for all schemes 37
6.2. Effect of parameter discontinuities in Level 2 of (LS)TVω , (LS)TVωε and (LS)TV−Fidω 38
6.3. Dyadic subdivision approach to Level 1 39
6.4. Numerical examples with the complete schemes (LS)TV−Fidω and (LS)TGV−Fidω 40
Acknowledgements 41
References 41

1991 Mathematics Subject Classification. 68U10, 26B30, 49J10, 94A08.
Key words and phrases. total variation, total generalized variation, discontinuous weights, spatially-dependent regular-

ization parameters, box constraint, bilevel optimization.
1



2 ELISA DAVOLI, RITA FERREIRA, IRENE FONSECA, AND JOSÉ A. IGLESIAS

1. Introduction

A fundamental problem in image processing is the restoration of a given “noisy” image. Images
are often deteriorated due to several factors occurring, for instance, in the process of transmission or
acquisition, such as blur caused by motion or a deficient lens adjustment.

A well-established and successful approach for image restoration is hinged on variational PDE methods,
where minimizers of certain energy functionals provide the sought “clean” and “sharp” images. In the
particular case where the degradation consists of additive noise, these energy functionals usually take the
form

E(u) := ‖u− uη‖pX +Rα(u) for u ∈ X̃, (1.1)

where uη represents the given noisy image and X̃ is the class of possible reconstructions of uη. The first
term in (1.1), ‖u− uη‖pX , is the fidelity or data fitting term that, in a minimization process, controls the
distance between u and uη in some space X. The second term, Rα(u), is the so-called filter term, and is
responsible for the regularization of the images. The parameter α is often called a tuning or regularization
parameter, and accounts for a balance between the fidelity and filter terms.

A milestone approach in imaging denoising is due to Rudin, Osher, and Fatemi [60], who proposed
(in a discrete setting, later extended to a function space framework in [1, 18]) an energy functional of
the type (1.1) with X := L2(Q), p := 2, X̃ := BV (Q), and Rα(u) := αTV (u,Q) with α > 0, where
Q ⊂ R2 is the image domain and TV (u,Q) is the total variation in Q of a function of bounded variation
u ∈ BV (Q). Precisely, given an observed noisy version uη ∈ L2(Q) of a true image, the ROF or TV
model consists in finding a reconstruction of the original clean image as the solution of the minimization
problem

min
u∈BV (Q)

{
‖u− uη‖2L2(Q) + αTV (u,Q)

}
. (1.2)

A striking feature of this model is that it removes noise while preserving images’ edges. This model has
been extended in several ways, including higher-order and vectorial settings to address color images, and
gave rise to numerous related filter terms seeking to overcome some of its drawbacks, such as blurring
and the staircasing effect (see, for instance, [4, 22, 10] for an overview).

In a nutshell, the TV model yields functions u that best fit the data, measured in terms of the L2

norm, and whose gradient (total variation) is low so that noise is removed. The choice of the parameter
α plays a decisive role in the success of this and similar variational approaches, as it balances the fitting
and regularization features of such models. In fact, higher values of α in (1.2) lead to an oversmoothed
reconstruction of uη because the total variation has to be “small” to compensate for high values of α;
conversely, lower values of α in (1.2) inhibit noise removal and, in particular, the reconstructed image
provided by (1.2) converges to uη as α→ 0 (see [34]).

In principle, the “optimal” parameter α needs to be chosen individually for each noisy image, which
makes such models require additional information to be complete. To address this issue, a partial au-
tomatic selection of an “optimal” parameter α was proposed in [34, 35] (see also [23, 24, 39, 61]) in
the flavour of Machine Learning optimization schemes. This automatic selection is based on a bilevel
optimization scheme searching for the optimal α that minimizes the distance, in some space, between the
reconstruction of a noisy image and the original clean image. In this setting, both the noisy image, uη,
and the original clean image, uc, are known a priori and called the training data. The rationale is to use
the same parameter α to reconstruct noisy images that are qualitatively similar to that of the training
scheme and corrupted by a similar type and amount of noise, and are thus expected to require a similar
balance between fitting and regularization effects.

In the context of the TV model in (1.2), one such bilevel optimization scheme reads as follows. Here,
and in the sequel, R+ stands for the set of positive real numbers, (0,∞). Moreover, for minimization
problems over R+ or R+ ×R+, we write arginf instead of argmin to include the case where the infimum
would be attained at the boundary of these open sets.

(LS)TV TV learning scheme (1.3)

Level 1. Find

ᾱ = arginf
{∫

Q

|uc − uα|2 dx : α ∈ R+
}

;
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Level 2. Given α ∈ R+, find

uα = argmin
{∫

Q

|uη − u|2 dx+ αTV (u,Q) : u ∈ BV (Q)
}
.

This approach yields a unified way of identifying the best fitting parameters for every class of training
data lying in the same L2-neighborhood. However, the learning scheme (1.3) does not address a major
drawback of the TV and similar models using scalar regularization parameters. In fact, it does not take
into account possible inhomogeneous noise (occurring, e.g., in parallel acquisition in magnetic resonance
imaging [38]) and other local features in a given deteriorated image that would benefit from an adapted
treatment.

A solution to this issue consists in resorting to adaptive methods and varying fitting parameters instead.
The mathematical literature in this direction is vast, from which we single out the following contributions:
[49, 58] for results in the finite-dimensional case and for optimal image filters, [33] for bilevel learning in
function spaces and development of numerical optimization, [30, 29, 52, 51, 53] for a study of optimal
regularizers, [54] for a bilevel analysis of novel classes of semi-norms, [55] for an approach via Young
measures, and [14, 42, 37, 26] and the references therein for an overview.

A relevant question in image reconstruction (as pointed out in [50], among others) is the possibility of
adapting the fitting parameters to the specific features of a given class of noisy images by performing, e.g.,
a stronger regularization in areas which have been highly deteriorated and by tuning down the filtering
actions in portions that, instead, have been left unaffected.

Here, starting from the ideas in [50], we propose space-dependent learning schemes that locally search
for the optimal level of refinement and the optimal regularization parameters. The optimal level of
refinement translates into finding an optimal partition of the noisy image’s domain that takes into account
its local features. Precisely, as before, Q = (0, 1)2 represents the images’ domain. We say that L is an
admissible partition of Q if it consists of dyadic squares, each of which we often denote by L (see Section 2
for a more detailed description of these partitions). Note that an admissible partition might be more or
less refined in different parts of the domain. We denote by P the class of all such admissible partitions
L of Q. Finally, let (uη, uc) ∈ BV (Q) × BV (Q) be a training pair of noisy and clean images. The first
space-dependent learning scheme that we propose to restore uη, based on the a priori knowledge of uc, is
as follows.

(LS)TVω Weighted-TV learning scheme (1.4)

Level 3. (optimal local training parameter) Fix L∈ P; for each L ∈ L, find

αL := inf
{

arginf
{∫

L

|uc − uα,L|2 dx : α ∈ R+
}}

, (1.5)

where, for α ∈ R+,

uα,L := argmin
{∫

L

|uη − u|2 dx+ αTV (u, L) : u ∈ BV (L)
}
. (1.6)

Level 2. (space-dependent image denoising) For each L∈ P, find

uL := argmin
{∫

Q

|uη − u|2 dx+ TVωL
(u,Q) : u ∈ BVωL

(Q)
}
, (1.7)

where we consider the piecewise constant weight ωL defined by

ωL(x) :=
∑
L∈L

αLχL(x) with αL given by Level 3, (1.8)

and BVωL
is the space of ωL-weighted BV -functions (see Section 3.2).

Level 1. (optimal partition and image restoration) Find

u∗ ∈ argmin
{∫

Q

|uc − uL|2 dx : L∈ P

}
with uL given by Level 2.
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Remark 1.1. (i) We observe that by taking the infimum in (1.5), the corresponding parameter αL is
always well defined. On the other hand, if TV (uη, L) > TV (uc, L) and ‖uη−uc‖2L2(L) < ‖[uη]L−uc‖2L2(L)
as in [34], with [uη]L := 1

|L|
∫
L
uη dx, we prove in Theorem 3.8 that there exists α̃L ∈ (0,∞) satisfying

α̃L ∈ argmin
{∫

L

|uc − uα,L|2 dx : α ∈ R+
}

(see [34] for similar statements), in which case the infimum on such α̃L as in (1.5) may be regarded as a
choice criterium on the optimal parameter.

(ii) We refer to Section 3.2 for the definition and discussion of the space BVωL
of ωL-weighted BV -

functions, as introduced in [5]. In particular, using the results in [5] (and also [15, 16]), we prove under
appropriate conditions that uL ∈ BV (Q) and

TVωL
(uL, Q) =

∫
Q

ωsc
−

L (x) d|DuL|(x), (1.9)

where ωsc−L denotes the lower-semicontinuous envelope of ωL. We further mention the works in [3, 41]
addressing the study of inverse problems that include a weighted-TV model of the form of the one in
(1.7).

The existence of solutions to the learning scheme (LS)TVω in (1.4) is intimately related to the existence
of a stopping criterion for the refinement of the admissible partitions or, in other words, a lower bound on
the size of the dyadic squares L ∈ L, with L∈ P. This notion is made precise in the following definition.

Definition 1.2 (stopping criterion for the refinement of the admissible partitions). We say
that a condition (S) on Pis a stopping criterion for the refinement of the admissible partitions if there
exist κ ∈ N and L1, ...,Lκ ∈ P such that

argmin
{∫

Q

|uc − uL|2 dx : L∈ P

}
= argmin

{∫
Q

|uc − uLi |2 dx : i ∈ {1, ..., κ}
}

provided that (S) holds, where uL and uLi are given by (1.7). In this case, we write P̄ := ∪κi=1{Li}.

We refer to Section 3.4 for examples of stopping criteria as in Definition 1.2, from which we highlight
the box-constraint that we discuss next.

Remark 1.3 (box constraint as a stopping criterion). To prove the existence of a solution to
the learning scheme (LS)TVω in (1.4), we adopt the usual box-constraint approach in which we replace
α ∈ R+ by

α ∈
[
c0,

1
c0

]
for some c0 ∈ (0, 1). (1.10)

In this case, the analog of (1.5) becomes

ᾱL = inf
{

arginf
{∫

L

|uc − uα,L|2 dx : α ∈
[
c0,

1
c0

]}}
. (1.11)

Under some assumptions on the training data, we prove in Subsection 3.4 (see Theorem 1.4 below) that
this box constraint is equivalent to the existence of a stopping criterion for the refinement of the admissible
partitions as in Definition 1.2.

Theorem 1.4 (Equivalence between box constraint and stopping criterion). Consider the
learning scheme (LS)TVω in (1.4). The two following statements hold:

(a) If we replace (1.5) by (1.11), then there exists a stopping criterion (S) for the refinement of the
admissible partitions as in Definition 1.2.

(b) Assume that there exists a stopping criterion (S) for the refinement of the admissible partitions
as in Definition 1.2 such that the training data satisfies for all L ∈ ∪L∈P̄L, with P̄ as in
Definition 1.2, the conditions

(i) TV (uc, L) < TV (uη, L);
(ii) ‖uη − uc‖2L2(L) < ‖[uη]L − uc‖2L2(L), where [uη]L = 1

|L|
∫
L
uη dx.

Then, there exists c0 ∈ R+ such that the optimal solution u∗ provided by (LS)TVω with P replaced
by P̄ coincides with the optimal solution u∗ provided by (LS)TVω with (1.5) replaced by (1.11).
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Next, we state our main theorem regarding existence of solutions for the learning scheme (LS)TVω
in (1.4). We state this result under the box-constraint condition. However, in view of Theorem 1.4,
this result holds true under any stopping criterion for the refinement of the admissible partitions, and in
particular if the the training data satisfies the conditions (i) and (ii) above.

Theorem 1.5 (Existence of solutions to (LS)TVω). There exists an optimal solution u∗ to the
learning scheme (LS)TVω in (1.4), whenever (1.5) is replaced by (1.11) for some fixed c0 ∈ (0, 1).

The proofs of Theorems 1.4 and 1.5 are presented in Section 3, where we also explore alternative
stopping criteria.

As shown in [47, Theorem 2.4.17], given a positive, bounded, and Lipschitz continuous function ω :
Q → (0,∞) with ∇ω ∈ BV (Q;R2), the solution of (1.7) with ωL replaced by ω may exhibit jumps
inherited from the weight ω that are not present in the data uη, see Figure 2 for a numerical example.
Because ωL in Level 2 is constructed using the local optimal parameters given by Level 3, we heuristically
expect that, in most applications, these extra jumps do not induce clearly visible artifacts. However, this
possible issue has led us to consider two alternative adaptive space-dependent learning schemes.

First, we consider a learning scheme based on (LS)TVω in (1.4) with ωL replaced by a smooth regu-
larization (ωε)L (see the regularized weighted TV learning scheme (LS)TVωε in (1.12) below). Second,
using the fact that the minimizer in (1.6) coincides with

argmin
{

1
α

∫
L

|uη − u|2 dx+ TV (u, L) : u ∈ BV (L)
}
,

we consider the weighted-fidelity learning scheme (LS)TV−Fidω in (1.16) below, where the weight appears
in the fidelity term. Let us point out that a detailed analysis of the differences arising between weighted-
fidelity and weighted-regularization parameter for TV has been carried out in the one-dimensional case
in [44].

We begin by describing the regularized scenario.

(LS)TVωε Regularized weighted-TV learning scheme (1.12)

Level 3. (optimal local training parameter) Fix L∈ P; for each L ∈ L, find

αL = inf
{

arginf
{∫

L

|uc − uα,L|2 dx : α ∈ R+
}}

, (1.13)

where, for α ∈ R+,

uα,L := argmin
{∫

L

|uη − u|2 dx+ αTV (u, L) : u ∈ BV (L)
}
.

Level 2. (space-dependent image denoising) For each L∈ P and for ε > 0 fixed, find

uεL := argmin
{∫

Q

|uη − u|2 dx+ TVωε
L
(u,Q) : u ∈ BVωε

L
(Q)
}
,

where we consider a regularized weight ωεL : Q→ [0,∞) of ωL in (1.8) such that

ωεL ∈ C1(Q) and ωεL↗ ωL as ε→ 0+ and a.e. in Q. (1.14)

Level 1. (optimal partition and image restoration) Find

u∗ε ∈ argmin
{∫

Q

|uc − uεL|2 dx : L∈ P

}
with uεL given by Level 2.

For each ε > 0 fixed, similar results to those regarding the learning scheme (LS)TVω in (1.4) hold for
the learning scheme (LS)TVωε in (1.12). A natural question is whether a sequence of optimal solutions
of the latter, {u∗ε}ε, converge in some sense to an optimal solution of the former, u∗, as ε → 0+. This
turns out to be an interesting mathematical question (see Remark 4.3), which we partially address in the
following proposition.
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Proposition 1.6 (On the energies in (LS)TVωε as ε→ 0+). Under the setup of the learning schemes
(LS)TVω and (LS)TVωε above, fix L ∈ P and let EL : L1(Q) → [0,∞] and EεL : L1(Q) → [0,∞] be the
functionals defined for u ∈ L1(Q) by

EL[u] :=


∫
Q

|uη − u|2 dx+ TVωL
(u,Q) if u ∈ BVωL

(Q),

+∞ otherwise,

EεL[u] :=


∫
Q

|uη − u|2 dx+ TVωε
L
(u,Q) if u ∈ BVωε

L
(Q),

+∞ otherwise.

If (1.14) holds, then
Γ(L1(Q))− lim sup

ε→0+
EεL 6 EL. (1.15)

Inequality (1.15) states, roughly speaking, that the asymptotic behavior of the functionals EεL is
bounded from above by EL, for it can be equivalently expressed as

inf
{

lim sup
ε→0+

EεL[uε] : uε → u strongly in L1(Q)
}
6 EL[u]

for every u ∈ L1(Q). The proof of this proposition and an analytical discussion of the learning scheme
(LS)TVωε in (1.12) can be found in Section 4, while the corresponding numerical scheme is detailed in
Section 6.

Next, we study the weighted-fidelity learning scheme (LS)TV−Fidω motivated above.
(LS)TV−Fidω Weighted-fidelity learning scheme (1.16)

Level 3. (optimal local training parameter) Fix L∈ P; for each L ∈ L, find

αL = inf
{

arginf
{∫

L

|uc − uα,L|2 dx : α ∈ R+
}}

, (1.17)

where, for α ∈ R+,

uα,L := argmin
{∫

L

1
α
|uη − u|2 dx+ TV (u, L) : u ∈ BV (L)

}
. (1.18)

Level 2. (space-dependent image denoising) For each L∈ P, find

uL := argmin
{∫

Q

1
ωL

|uη − u|2 dx+ TV (u,Q) : u ∈ BVωL
(Q)
}
,

where, similarly to (1.8), ωL is defined by

ωL(x) :=
∑
L∈L

αLχL(x) with αL given by Level 3.

Level 1. (optimal partition and image restoration) Find

u∗ ∈ argmin
{∫

Q

|uc − uL|2 dx : L∈ P

}
with uL given by Level 2.

Once more, similar results to those regarding the learning scheme (LS)TVω in (1.4) hold for the learning
scheme (LS)TV−Fidω in (1.16). In particular, the box constraint here is essential to guarantee that
Level 2 of the scheme is well posed. This analysis is undertaken in Section 4, while the corresponding
numerical study is addressed in Section 6.

The last theoretical result of this paper concerns replacing the TV term in our space-dependent
bilevel learning schemes with a higher-order regularizer. A well-known drawback of the ROF model
is the possible occurrence of staircasing effects whenever two neighboring areas of an image are both
smoothed out and an abrupt spurious discontinuity is produced in the denoising process. To counteract
this effect a canonical solution (among others like the use of Huber-type smoother approximations of
the total variation as in [13]) consists in resorting to higher-order derivatives in the regularizer (see, e.g.,
[21, 28, 56, 10]). We consider here the total generalized variation (TGV ) model introduced in [11], which
is considered to be one of the most effective image-reconstruction models among those involving mixed
first- and higher-order terms, cf. [56, 12, 59, 46] for some theoretical results about its solutions.



DYADIC PARTITION-BASED TRAINING SCHEMES FOR TV/TGV DENOISING 7

For a function u ∈ BV (Q) and α = (α0, α1) ∈ R+ ×R+, the second-order TGV functional is given by
TGVα0,α1(u) := min

{
α0|Du− v|(Q) + α1|Ev|(Q) : v ∈ BD(Q)

}
, (1.19)

where, as before, Du denotes the distributional gradient of u, |µ|(Q) is the total variation on Q of a
Radon measure µ, E is the symmetric part of the distributional gradient, and BD indicates the space of
vector-valued functions with bounded deformation, cf. [62]. In this setting, our learning scheme reads as
follows.
(LS)TGVω Weighted-TGV learning scheme (1.20)

Level 3. (optimal local regularization parameter) Fix L∈ P; for each L ∈ L, find

αL =
(
(αL)0, (αL)1

)
:= inf

{
arginf

{∫
L

|uc − uα,L|2 dx : α = (α0, α1) ∈ R+ × R+
}}

, (1.21)

where, for α = (α0, α1) ∈ R+ × R+,

uα,L := argmin
{∫

L

|uη − u|2 dx+ TGVα0,α1(u, L) : u ∈ BV (L)
}
, (1.22)

and where the infimum in (1.21) is meant with respect to the lexicographic order in R2.
Level 2. (space-dependent TGV image denoising) For each L∈ P, find

uL := argmin
{∫

Q

|uη − u|2 dx+ TGVω0
L
,ω1

L
(u,Q) : u ∈ BVω0

L
(Q)
}
, (1.23)

where, for i ∈ {0, 1}, the weight ωiL is defined by

ωiL(x) :=
∑
L∈L

(αL)i χL(x) with αL given by Level 3.

In the expression above,

TGVω0
L
,ω1

L
(u,Q) := inf

v∈BDω1
L

(Q)

{
Vω0

L
(Du− v,Q) + Vω1

L
(Ev,Q)

}
, (1.24)

where the quantities Vω0
L
and Vω1

L
are weighted counterparts to the classical total variation

of Radon measures. We refer to Sections 2 and 5 for the precise definition and properties of
these quantities. In particular, we will prove that

Vω0
L
(Du− v,Q) =

∫
Q

(ω0
L)sc−d|Du− v|, (1.25)

and
Vω1

L
(Ev,Q) =

∫
Q

(ω1
L)sc−d|Ev|, (1.26)

where BVω0
L
is the space of ω0

L-weighted BV -functions (see Subsection 3.2) and BDω1
L
is

the space of ω1
L-weighted BD-functions (see Section 5).

Level 1. (optimal partition and image restoration) Find

u∗ ∈ argmin
{∫

Q

|uc − uL|2 dx : L∈ P

}
with uL given by Level 2.

Analogously to (LS)TV−Fidω , we can also consider a weighted-fidelity TGV scheme, which we use in
our numerical results and describe next.
(LS)TGV−Fidω TGV weighted-fidelity learning scheme (1.27)

With α0, α1 ∈ R+ fixed throughout:
Level 3. (optimal local training parameter) Fix L∈ P; for each L ∈ L, find

λL = inf
{

arginf
{∫

L

|uc − uλ,L|2 dx : λ ∈ R+
}}

, (1.28)

where, for λ ∈ R+,

uλ,L := argmin
{
λ

∫
L

|uη − u|2 dx+ TGVα0,α1(u, L) : u ∈ BV (L)
}
.
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Level 2. (space-dependent image denoising) For each L∈ P, find

uL := argmin
{∫

Q

ωL|uη − u|2 dx+ TGVα0,α1(u,Q) : u ∈ BVωL
(Q)
}
,

where ωL is defined by

ωL(x) :=
∑
L∈L

λLχL(x) with λL given by Level 3.

Level 1. (optimal partition and image restoration) Find

u∗ ∈ argmin
{∫

Q

|uc − uL|2 dx : L∈ P

}
with uL given by Level 2.

As in the case of our learning schemes for the weighted total variation, the analysis of (LS)TGVω and
(LS)TGV−Fidω is performed under a box constraint assumption, which for the first case reads as

α = (α0, α1) ∈
[
c0,

1
c0

]
×
[
c1,

1
c1

]
. (1.29)

Our main result for the weighted-TGV scheme is the following.

Theorem 1.7 (Existence of solutions to (LS)TGVω). There exists an optimal solution u∗ to the
learning scheme (LS)TGVω in (1.20) with the minimization in (1.21) restricted by (1.29).

Analogously, we infer the ensuing theorem for the TGV with weighted fidelity.

Theorem 1.8 (Existence of solutions to (LS)TGV−Fidω). For every c ∈ (0, 1), there exists an
optimal solution u∗ to the learning scheme (LS)TGV−Fidω in (1.27) with the minimization in (1.28)
restricted by the box constraint λ ∈

[
c, 1
c

]
.

Also in the case of weighted-TGV learning schemes, we provide a connection between stopping criteria
and existence of a box constraint. To be precise, we show that if (1.29) is imposed, then a stopping
criterion can be naturally imposed on the schemes. Concerning the converse implication, we show that if
a suitable stopping criterion is enforced, then (αL)0 and (αL)1 are both always bounded from below by
a positive constant, and that they cannot simultaneously blow up to infinity. The weaker nature of this
latter implication is due to one main reason: the upper bound established on the optimal parameters for
the weighted TV scheme is hinged upon a suitable Poincaré inequality for the total variation functional,
cf. Proposition 3.5; in the TGV case, the analogous argument only provides a bound from above for
the minimum between (αL)0 and (αL)1, and thus does not allow to conclude the existence of a uniform
upper bound on either component, cf. Proposition 5.11. We refer to Subsection 5.3 for a discussion
of this issue and for the details of this argument. For completeness, we mention that a result related
to Proposition 5.11 has been proven in [57, Proposition 6]. In Proposition 5.11, we make this study
quantitative and keep track of the dependence on the cell size through the Poincaré constant.

The results we present suggest a number of possible directions and questions for future research. One
possible avenue is the formulation of similar schemes with piecewise constant weights in the case of
Mumford–Shah regularizations, relating to the Ambrosio–Tortorelli scheme of [40] which explicitly allows
for discontinuous weights. Another is an investigation of the relation and apparent discrepancy between
our results concluding stopping of the refinement of partitions, in which parameter variations at very fine
scales are not advantageous, and numerical results in the literature where wildly varying parameter maps
appear in the optimization, such as in [48].

The paper is organized as follows: in Section 2, we collect some notation which will be employed
throughout the paper. The focus of Sections 3 and 4 is on our weighted-TV scheme, as well as on the two
variants thereof, including a regularization of the weight and a weighted fidelity, respectively. Section 5 is
devoted to the study of our weighted-TGV learning scheme and of the corresponding TGV scheme with
weighted fidelity. Section 6 contains some numerical results for the various learning schemes presented
in the paper and a comparison of their performances.
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2. Glossary

Here we collect some notation that will be used throughout the paper, and introduce some energy
functionals that will be studied.

We start by addressing our admissible partitions of the unit cube Q = (0, 1)2 into dyadic squares. For
κ ∈ N0, let

Zκ :=
{

2−κz ∈ [0, 1)2 : z ∈ Z2} .
For instance, Z0 = {(0, 0)} and Z1 = {(0, 0), (0, 1

2 ), ( 1
2 , 0), ( 1

2 ,
1
2 )}. Note that Zk has cardinality 2k × 2k,

which allow us to write Zκ = ∪4κ
ι=1z

(κ)
ι , where z(κ)

ι = 2−κzι for a convenient zι ∈ Z2. Then, for each
κ ∈ N0 and ι ∈ {1, ..., 4κ}, we consider the dyadic square

Qκι :=
(
z(κ)
ι +

(
0, 1

2κ

]2
)
∩Q.

For each κ ∈ N0 fixed, we have that Qκι1 ∩ Q
κ
ι2 = ∅ for every ι1, ι2 ∈ {1, ..., 4κ} with ι1 6= ι2; moreover,

Q = ∪4κ
ι=1Q

κ
ι . In particular, L := {Qκι : ι ∈ {1, ..., 4κ}} provides an example of an admissible partition of

Q. More generally, recalling that we denote by P the class of all admissible partitions L of Q consisting
of dyadic squares as above, then if L∈ P and L ∈ L are arbitrary, there exist κ ∈ N0 and ι ∈ {1, ..., 4κ}
such that L = Qκι .

The setting of our work is a two-dimensional one, mainly due to the scale invariance of the constant in
the two-dimensional Poincaré–Wirtinger inequality in BV , as discussed in the proof of Proposition 3.1.
This invariance is crucial to prove existence of solutions for our schemes (see, for instance, Theorem 3.6).
However, there are some theoretical results concerning the weighted-BV and weighted-TGV spaces that
hold in any dimension n ∈ N, for which reason we state such results in Rn.

In what follows, Ω ⊂ Rn is an open and bounded set and X stands for either R, Rn, or Rn×nsym , where
the latter is the space of all n×n symmetric matrices and n ∈ N. We denote byM(Ω;X) the space of all
finite Radon measures in Ω with values on X, and by |µ| ∈ M(Ω;R+

0 ) the total variation of µ ∈M(Ω;X),
which is defined for each measurable set B ⊂ Ω by

|µ|(B) := sup
{ ∞∑
i=1
|µ(Bi)| : {Bi}i∈N is a partition of B

}
.

Using the Riesz representation theorem,M(Ω;X) can be identified with the dual of C0(Ω;X′), the closure
with respect to the supremum norm of the set of all continuous functions on Ω with compact support.
In particular, the total variation of a Radon measure µ ∈M(Ω;X) is alternatively given by

|µ|(B) = sup
{∫

B

ϕ(x) · dµ(x) : ϕ ∈ C0(B;X′), ‖ϕ‖L∞(B;X′) 6 1
}
, B ⊂ Ω measurable, (2.1)

where · represents the duality product between an element of X′ and an element of X. With the trivial
identification of column vectors with row vectors, we will often write X in place of X′.

In the case in which µ = Du ∈ M(Ω;Rn) for some u ∈ BV (Ω), a density argument shows that (2.1)
is equivalent to

|Du|(B) = sup
{∫

B

u(x) divϕ(x) dx : ϕ ∈ Lipc(B;Rn), ‖ϕ‖L∞(B;Rn) 6 1
}
, (2.2)

and we often write TV (u,B) in place of |Du|(B). In the preceding expression, and throughout this
manuscript, Lipc(B;X) represents the space of all X-valued Lipschitz functions with compact support in
B.

Similarly, in the case in which µ = Ev ∈ M(Ω;Rn×nsym ) for some v ∈ BD(Ω) and E the symmetrical
part of the distributional derivative, then (2.1) is equivalent to

|Ev|(B) = sup
{∫

B

v(x) · divϕ(x) dx : ϕ ∈ Lipc(B;Rn×nsym ), ‖ϕ‖L∞(B;Rn×nsym ) 6 1
}
, (2.3)

where (divϕ)j =
∑n
k=1

∂ϕjk
∂xk

for each j ∈ {1, ..., n}.
At the core of the present manuscript are weighted versions of the spaces of bounded variation and

of bounded deformation. These weighted versions rely on a generalization of (2.2) and (2.3) that cannot
be derived directly from the Riesz representation theorem, and thus need a careful analysis to prove the
variational identities stated in (1.9) and (1.25)–(1.26), addressed in Sections 3 and 5, respectively.
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Given a Radon measure µ ∈ M(Ω;X) and a locally integrable function ω : Ω→ [0,∞), we define the
ω-weighted variation of µ on Ω, written Vω(µ,Ω), by

Vω(µ,Ω) := sup
{∫

Ω
ϕ(x) · dµ(x) : ϕ ∈ Lipc(Ω;X′), |ϕ| 6 ω

}
. (2.4)

As before, if µ = Du ∈M(Ω;Rn) for some u ∈ BV (Ω), then (2.4) is equivalent to

Vω(Du,Ω) = sup
{∫

Ω
u(x) divϕ(x) dx : ϕ ∈ Lipc(Ω;Rn), |ϕ| 6 ω

}
,

which we often represent by TVω(u,Ω), and we define

BVω(Ω) :=
{
u : Ω→ R measurable:

∫
Ω
|u(x)|ω(x) dx <∞ and TVω(u,Ω) <∞

}
.

Also, if µ = Du − v := Du − vLnbΩ ∈ M(Ω;Rn) for some u ∈ BV (Ω) and v ∈ L1(Ω;Rn), then (2.4) is
equivalent to

Vω(Du− v,Ω) = sup
{∫

Ω

(
u(x) divϕ(x) + v(x) · ϕ(x)

)
dx : ϕ ∈ Lipc(Ω;Rn), |ϕ| 6 ω

}
.

Moreover, if µ = Ev ∈M(Ω;Rn×nsym ) for some v ∈ BD(Ω), then (2.4) is equivalent to

Vω(Ev,Ω) = sup
{∫

Ω
v(x) · divϕ(x) dx : ϕ ∈ Lipc(Ω;Rn×nsym ), |ϕ| 6 ω

}
,

and we define

BDω(Ω) :=
{
v : Ω→ R measurable:

∫
Ω
|v(x)|ω(x) dx <∞ and Vω(Ev,Ω) <∞

}
.

The energy functional associated with the analogue to the ROF’s model, where we use a weighted-TV
regularizer on Ω ⊂ R2 instead of the total variation (TV), is denoted by (see Theorem 3.2)

E[u] :=
∫

Ω
|uη − u|2 dx+ TVω(u,Ω).

To highlight the dependence on a partition L of Q made of dyadic cubes, the extension of the preceding
functional (for a weight ωL and Ω = Q) to L1(Q) is represented by

EL[u] :=


∫
Q

|uη − u|2 dx+ TVωL
(u,Q) if u ∈ BVωL

(Q),

+∞ otherwise.
Moreover, for the ε-dependent regularized weight ωεL, introduced in (1.14), the energy above is written
as

EεL[u] :=


∫
Q

|uη − u|2 dx+ TVωε
L
(u,Q) if u ∈ BVωε

L
(Q),

+∞ otherwise.
The two preceding functionals are introduced in Proposition 1.6, where we address the relationship
between the weighted-TV and the regularized weighted-TV learning schemes in (1.4) and (1.12), respec-
tively.

For a fixed image domain Ω ⊂ R2, the optimal tuning parameter α in Level 3 of any of the TV learning
schemes addressed here is found by minimizing the cost function I : (0,∞)→ R defined by

I(α) :=
∫

Ω
|uc − uα|2 dx for α ∈ (0,+∞), (2.5)

where uc is the clean image and uα is the reconstructed image obtained as the minimizer of the denoising
model in aforementioned Level 3. In our analysis, we make use of the extension Î : [0,+∞]→ [0,+∞] of
I to the closed interval [0,+∞] defined for ᾱ ∈ [0,+∞] by

Î(ᾱ) := inf
{

lim inf
j→∞

I(αj) : (αj)j∈N ⊂ (0,+∞), αj → ᾱ in [0,+∞]
}
, (2.6)

which can be seen as the lower-semicontinuous envelope of I on the closed interval [0,+∞]. As it
turns out, Î is actually a continuous function on [0,+∞] (cf. Corollary 3.11). The study of existence of
minimizers for I and the characterization of Î for the weighted-TV learning scheme in (1.4) is addressed
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in Theorem 3.8, Lemma 3.10, and Corollary 3.11. This study relies on the convergence of minimizers of
the family, parametrized by α ∈ (0,∞), of energy functionals associated with ROF’s model,

Fα[u] :=


∫

Ω
|uη − u|2 dx+ αTV (u,Ω) if u ∈ BV (Ω),

+∞ otherwise.
In turn, this convergence analysis naturally involves the extreme points ᾱ = 0 and ᾱ = +∞, which are
associated with the energies

F0[u] :=


∫

Ω
|uη − u|2 dx if u ∈ L2(Ω),

+∞ otherwise,
and F∞[u] :=


∫

Ω
|uη − c|2 dx if u ≡ c ∈ R,

+∞ otherwise,

respectively (we remark that, since the local parameters in each dyadic square are constant, this analysis
also applies for the weighted-TV learning scheme in (1.4)).

Regarding the TGV case, to obtain the existence of optimal parameters for Level 3 of the schemes
(1.20) and (1.27), stated in Theorem 5.13, we are led to study Γ-convergence of the family of functionals,
parametrized by α = (α0, α1) ∈ (0,+∞)2, defined as

Gα[u] :=
{∫

Ω |uη − u|
2 dx+ TGVα0,α1(u,Ω) if u ∈ BV (Ω),

+∞ otherwise.
In this case, the Γ-convergence result is more involved because it includes different combinations of ᾱi = 0,
ᾱi ∈ R+, or ᾱi = +∞ for i = 0 and i = 1. The expressions for the ensuing limits can be found in the
statement of Lemma 5.15.

The characterization of the extension to the closed interval [0,+∞]2 of the TGV analog of (2.5),
denoted by J(α) for α = (α0, α1), is contained in Lemma 5.18.

In the sequel, we use both the average of a function u : Ω→ R on a subdomain L ⊂ Ω,

[u]L := 1
|L|

∫
L

u(x) dx,

and its projection onto affine functions 〈u〉L, which is the unique solution to the minimum problem

min
{∫

L

|u− v|2 dx : v is affine in L
}
,

where in both cases the subscript may be omitted when L = Ω.

3. Analysis of the Weighted-TV learning scheme (LS)TVω
Here, we prove existence of solutions to the weighted-TV learning scheme, (LS)TVω , introduced in

(1.4). We analyze each level in the three subsequent subsections. In particular, we prove Theorem 1.5
in Subsection 3.3. Then, in Subsection 3.4, we prove Theorem 1.4 and we provide different examples of
stopping criteria for the refinement of the admissible partitions introduced in Definition 1.2.

3.1. On Level 3. In this section, we discuss the main features of Level 3, and variants thereof, of the
learning scheme (LS)TVω in (1.4).

As we mentioned in Remark 1.1, the parameter αL in (1.5) is uniquely determined by definition, with
αL ∈ [0,+∞]. Then, in view of Theorem 3.8 (see Subsection 3.4), if L ∈ L is such that

TV (uc, L) < TV (uη, L) and ‖uη − uc‖2L2(L) < ‖[uη]L − uc‖2L2(L), (3.1)
then

arginf
{∫

L

|uc − uα,L|2 dx : α ∈ R+
}

= argmin
{∫

L

|uc − uα,L|2 dx : α ∈
[
cL, CQ‖uη‖L2(L)

]}
,

where cL and CQ are positive constants, with cQ depending only on Q. In particular, we have that
αL ∈

[
cL, CQ‖uη‖L2(L)

]
. Furthermore, because each partition L∈ P is finite, it follows that if (3.1)

holds for all L ∈ L, then

αL ∈ KL :=
[

min
L∈L

cL, CQ max
L∈L
‖uη‖L2(L)

]
⊂ (0,+∞)

for every L ∈ L, which yields a natural box constraint for a fixed partition. Note, however, that the box
constraint given by the compact set KL may vary according to the choice of the partition L.
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Finally, if we consider Level 3 with (1.5) replaced by (1.11), then the minimum

min
α∈[c0, 1

c0
]

∫
L

|uc − uα,L|2 dx

exists as the minimum of a lower semicontinuous function (see Corollary 3.11 in Subsection 3.4) on a
compact set. In particular, ᾱL is uniquely determined, with

ᾱL ∈
[
c0,

1
c0

]
for all L ∈ L and L∈ P.

3.2. On Level 2. Here, we discuss existence and uniqueness of solutions to the minimization problem
in (1.7). A key step in this discussion is the study of the space BVω(Ω) of ω-weighted BV -functions in
an open set Ω ⊂ Rn, where the weight ω : Ω→ [0,∞) is assumed to be a locally integrable function. We
adopt the approach introduced in [5], and further analyzed in [16, 15].

Given a ω-weighted locally integrable function in Ω, u ∈ L1
ω,loc(Ω), where

L1
ω,loc(Ω) :=

{
v : Ω→ R measurable:

∫
K

|v(x)|ω(x) dx <∞ for all compact K ⊂ Ω
}
, (3.2)

we define its ω-weighted total variation in Ω, TVω(u,Ω), by

TVω(u,Ω) := sup
{∫

Ω
u divϕ dx : ϕ ∈ Lipc(Ω;R2), |ϕ| 6 ω

}
(3.3)

(see also Section 2). Accordingly, we define the space BVω(Ω) of ω-weighted BV -functions in Ω by

BVω(Ω) :=
{
u ∈ L1

ω(Ω): TVω(u,Ω) <∞
}
,

endowed with the semi-norm

‖u‖BVω(Ω) := ‖u‖L1
ω(Ω) + TVω(u,Ω), where ‖u‖L1

ω(Ω) :=
∫

Ω
|u(x)|ω(x) dx. (3.4)

Clearly, if ω ≡ 1, then we recover the usual space BV of functions of bounded variation. Moreover,
if ω > 0 (Lebesgue)-a.e. in Ω and ω belongs to the global Muckenhoupt class A1, meaning that there is
c > 0 such that for (Lebesgue)-a.e. x ∈ Ω and for every ball B(x, r) ⊂ Ω, we have

ω(x) > c[ω]B(x,r), (3.5)

then expression in (3.4) defines a norm in BVω(Ω). Next, we collect some properties of BVω(Ω), proved
in [5, 16, 15], that will be used in our analysis.

Theorem 3.1. Let Ω ⊂ Rn be an open set and let ω : Ω→ [0,∞) be a locally integrable function. Then,
the following hold:

(i) The map u 7→ TVω(u,Ω) is lower-semicontinuous with respect to the (strong) convergence in
L1
ω,loc(Ω).

(ii) Given u ∈ L1
ω,loc(Ω), we have that TVω(u,Ω) = TVωsc− (u,Ω), where ωsc− denotes the lower-

semicontinuous envelope of ω.
(iii) Assume that ω is lower-semicontinuous and strictly positive everywhere in Ω. Then, we have that

u ∈ L1
loc(Ω) and TVω(u,Ω) <∞ if and only if u ∈ BVloc(Ω) and ω ∈ L1(Ω; |Du|). If any of these

two equivalent conditions hold, then we have

TVω(u,B) =
∫
B

ω(x) d|Du|(x)

for every Borel set B ⊂ Ω.

Proof. The proof of (i)–(iii) may be found in [5] under the additional assumption that ω satisfies a
Muckenhoupt A1 condition in (3.5) (see [5] for the details). Without assuming this extra assumption on
ω, the proof of (i) may be found in [15, Proposition 1.3.1 and Remark 1.3.2]; the proof of (ii) follows
from [15, Proposition 2.1.1 and Theorem 2.1.2]; finally, (iii) is shown in [15, Theorem 2.1.5]. �

The existence and uniqueness of solutions of Level 2 of the learning scheme (LS)TVω in (1.4) with (1.5)
replaced by (1.11) are hinged on the following theorem.



DYADIC PARTITION-BASED TRAINING SCHEMES FOR TV/TGV DENOISING 13

Theorem 3.2. Let v ∈ L2(Ω) and let ω : Ω → (0,∞) be an L∞ function with 0 < ess infΩ ω 6
ess supΩ ω <∞. Then, there exists a unique ū ∈ BVω(Ω) satisfying∫

Ω
|v − ū|2 dx+ TVω(ū,Ω) = min

u∈BVω(Ω)

{∫
Ω
|v − u|2 dx+ TVω(u,Ω)

}
.

Moreover, denoting by ωsc− the lower-semicontinuous envelope of ω, we have ū ∈ BVω(Ω) ∩ BV (Ω) ∩
BVωsc− (Ω) and

TVω(ū,Ω) =
∫

Ω
ωsc

−
(x) d|Dū|(x).

Proof. For u ∈ BVω(Ω), set

E[u] :=
∫

Ω
|v − u|2 dx+ TVω(u,Ω),

and let
m := inf

u∈BVω(Ω)
E[u].

Note that 0 6 m 6 E[0] = ‖v‖2L2(Ω), and consider (un)n∈N ⊂ BVω(Ω) such that

m = lim
n→∞

E[un]. (3.6)

By hypothesis, there exist c1, c2 ∈ R+ such that for a.e. x ∈ Ω, we have
c1 6 ω(x) 6 c2. (3.7)

Consequently, for all x ∈ Ω,
c1 6 ω

sc−(x) 6 c2. (3.8)
Then, in view of (3.6) and Theorem 3.1 (ii)–(iii), for all n ∈ N sufficiently large, we have

m+ 1 >
∫

Ω
|v − un|2 dx+ TVω(un,Ω) =

∫
Ω
|v − un|2 dx+ TVωsc− (un,Ω)

=
∫

Ω
|v − un|2 dx+

∫
Ω
ωsc

−
(x) d|Dun|(x) >

∫
Ω
|v − un|2 dx+ c1|Dun|(Ω).

Thus, extracting a subsequence if necessary (not relabeled), there exists ū ∈ BV (Ω) such that

un
∗
⇀ ū in BV (Ω), un ⇀ ū in L2(Ω), un → ū in L1(Ω).

Moreover, by (3.7)–(3.8) and Theorem 3.1, we have also ū ∈ BV (Ω) ∩BVωsc− (Ω), with

TVω(ū,Ω) =
∫

Ω
ωsc

−
(x) d|Dū|(x),

and
m 6 E[ū] =

∫
Ω
|v − ū|2 dx+ TVω(ū,Ω)

6 lim inf
n→∞

(∫
Ω
|v − un|2 dx+ TVωsc− (un,Ω)

)
= lim
n→∞

E[un] = m.

Because | · |2 is strictly convex, ū is the unique minimizer of E[·] over BVω(Ω). �

Corollary 3.3. There exists a unique solution uL ∈ BVωL
(Ω) ∩ BV (Ω) ∩ BV

ωsc
−

L

(Ω) to Level 2 of

the learning scheme (LS)TVω in (1.4) with (1.5) replaced by (1.11), where ωsc
−

L denotes the lower-
semicontinuous envelope of ωL. Moreover,

min
{∫

Q

|uη − u|2 dx+ TVωL
(u,Q) : u ∈ BVωL

(Q)
}

=
∫
Q

|uη − uL|2 dx+
∫

Ω
ωsc

−

L (x) d|DuL|(x).

Proof. Using the analysis in Subsection 3.1, the function ωL in (1.8) satisfies the bounds c0 6 ωL 6 1
c0

in Q, which, together with Theorem 3.2, concludes the proof. �

Remark 3.4. Recalling once again the analysis in Subsection 3.1, the previous corollary still holds if
we assume that (3.1) holds for all L ∈ L instead of replacing (1.5) by (1.11).
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3.3. On Level 1. Here, we prove that Level 1 of the learning scheme (LS)TVω admits a solution provided
we consider a stopping criterion as in Definition 1.2. We start by checking that the box constraint (1.10)
yields such a stopping criterion, after which we establish the converse statement. We then explore
alternative stopping criteria.

To prove that the box constraint (1.10) yields a stopping criterion for the refinement of the admissible
partitions, we first recall the existence of a smallness condition on the tuning parameter under which the
restored image given by the TV model is constant.

Proposition 3.5. There exists a positive constant, CQ, depending only on Q, such that for any dyadic
cube L ⊂ Q and for all α > CQ‖uη‖L2(L), the solution uα,L of (1.6) is constant, with uα,L ≡ [uη]L.

Proof. The proof is a simple consequence of [47, Proposition 2.5.7] combined with the scaling invariance
of the constant in the 2-dimensional Poincaré–Wirtinger inequality in BV (see [2, Remark 3.50]). �

Theorem 3.6. Consider the learning scheme (LS)TVω in (1.4) with (1.5) replaced by (1.11). Then,
there exist κ ∈ N and L1, ...,Lκ ∈ P such that

argmin
{∫

Q

|uc − uL|2 dx : L∈ P

}
= argmin

{∫
Q

|uc − uLi |2 dx : i ∈ {1, ..., κ}
}
. (3.9)

Proof. We use Proposition 3.5 to prove that if a partition contains dyadic squares of side length smaller
than a certain threshold, then it can be replaced by a partition of dyadic squares of side length greater
than that threshold without changing the minimizer at Level 2.

Let ε̄ ∈ (0, 1) be such that for every measurable set E ⊂ Q with |E| 6 ε̄, we have

‖uη‖L2(E) 6
c0
CQ

, (3.10)

where c0 is the constant in (1.11) and CQ is the constant given by Proposition 3.5. Set

k̄ := min
{
k ∈ N : 1

4k 6 ε̄
}

and P̄ :=
{
L∈ P: |L| > 1

4k̄
for all L ∈ L

}
.

Note that P̄ has finite cardinality. Finally, define
P∗ := P \ P̄.

Fix L∗ ∈ P∗, and let
L∗− := {L∗ ∈ L∗ : |L̃∗| > |L∗| for all L̃∗ ∈ L∗}

be the collection of all dyadic squares with the smallest side length in L∗. Then, there exists k∗ ∈ N, with
k∗ > k̄, such that |L∗| = 1

4k∗ for all L∗ ∈ L∗−. Moreover, by construction of our admissible partitions, we
can write

L∗− = ∪`j=1{L∗j,i}4i=1 for some ` ∈ N,
where, for each j ∈ {1, ..., `},

∪4
i=1L

∗
j,i =: L̄∗j is a dyadic square with |L̄∗j | =

1
4k∗−1 .

Note that k∗ − 1 > k̄. Then, for any α ∈ [c0, 1/c0], Proposition 3.5 and (3.10) yield∫
L∗
j,i

|uc − uα,L∗
j,i
| dx =

∫
L∗
j,i

|uc − [uη]L∗
j,i
| dx and

∫
L̄∗
j

|uc − uα,L̄∗
j
| dx =

∫
L̄∗
j

|uc − [uη]L̄∗
j
| dx

for all j ∈ {1, ..., `} and i ∈ {1, ..., 4}. Thus, by (1.11),
αL∗

j,i
= αL̄∗

j
= c0

for all j ∈ {1, ..., `} and i ∈ {1, ..., 4}. Consequently (see Figure 1), defining

L̄∗ := (L∗ \L∗−) ∪∪`j=1L̄
∗
j ,

we have L̄∗ ∈ P and, recalling Level 2,
ωL̄∗ ≡ ωL∗ and uω

L̄∗
≡ uωL∗ .
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Figure 1. Example of two partitions, L∗ and L̄∗, that yield the same solution at Level 2.

Note also that |L̄∗| > 1
4k∗−1 for all L̄∗ ∈ L̄∗. If k∗ − 1 = k̄, we conclude that L̄∗ ∈ P̄. Otherwise, if

k∗ − 1 > k̄, we repeat the construction above k∗ − 1− k̄ times to obtain a partition L̂∗ ∈ P̄ for which
uω

L̂∗
≡ uωL∗ .

Repeating this argument for each L∗ ∈ P∗, and recalling that P̄ has finite cardinality, we deduce
(3.9). �

Remark 3.7. We have shown in the previous proof that the box constraint condition yields a threshold
on the minimum side length of the dyadic squares of the possible optimal partitions L of Q. In other
words, the box constraint condition yields the following stopping criterion for the refinement of the
admissible partitions:

(S) There exists κ ∈ N such that |L| > 1
4κ for all L ∈ L.

In the next subsection, we establish the converse of this implication (see the proof of Theorem 1.4).

We conclude this section by proving Theorem 1.5 that shows the existence of an optimal solution to
the learning scheme (LS)TVω .

Proof of Theorem 1.5. This result is an immediate consequence of the results of Subsection 3.1, Corol-
lary 3.3, and Theorem 3.6. �

3.4. Stopping Criteria and Box Constraint. In this subsection, we provide different examples of
stopping criteria for the refinement of the admissible partitions, which notion was introduced in Defini-
tion 1.2, and we prove Theorem 1.4. The latter is based on the following theorem that yields a natural
box constraint for the optimal parameter α associated with the TV model, provided the training data
satisfy some mild conditions. The proof of (3.11) in Theorem 3.8 below uses arguments from [31] that
are alternative to those in [34].

Theorem 3.8. Let Ω ⊂ R2 be a bounded, Lipschitz domain and, for each α ∈ (0,+∞), let uα ∈ BV (Ω)
be given by (1.6) with L replaced by Ω. Assume that the two following conditions on the training data
hold:

i) TV (uc,Ω) < TV (uη,Ω);
ii) ‖uη − uc‖2L2(Ω) < ‖[uη]Ω − uc‖2L2(Ω).

Then, there exists α∗Ω ∈ (0,+∞) such that

I(α∗Ω) = min
α∈(0,+∞)

I(α) where I(α) :=
∫

Ω
|uc − uα|2 dx for α ∈ (0,+∞). (3.11)
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Moreover, there exist positive constants cΩ and CΩ, such that any minimizer, α∗Ω, of I over (0,+∞)
satisfies cΩ 6 α∗Ω < CΩ‖uη‖L2(Ω). Furthermore, if Ω = L with L ⊂ Q a dyadic square, then there exists
a positive constant cL such that any minimizer, α∗L of I over (0,+∞) satisfies cL 6 α∗L < CQ‖uη‖L2(L),
where CQ is the constant given by Proposition 3.5. In particular, α∗L → 0 as |L| → 0.

Remark 3.9. The constants CΩ and CQ characterizing the upper bound for the optimal parameters
in Theorem 3.8 depend only on the domains, Ω and Q, respectively (cf. Proposition 3.5). On the other
hand, the constants cΩ and cL providing a lower bound depend not only on the corresponding domain,
but also on uc and uη.

The proof of Theorem 3.8 is hinged on the next lemma of continuity with respect to the parameter in
the ROF functional, including the limit cases where the parameter vanishes or tends to +∞.

Lemma 3.10. Let Ω ⊂ R2 be a bounded, Lipschitz domain and, for each α ∈ (0,+∞), let uα ∈ BV (Ω)
be given by (1.6) with L replaced by Ω. Consider the family of functionals (Fᾱ)ᾱ∈[0,+∞], where Fᾱ :
L2(Ω)→ [0,+∞] is defined by

Fα[u] :=
{∫

Ω |uη − u|
2 dx+ αTV (u,Ω) if u ∈ BV (Ω),

+∞ otherwise,
for ᾱ = α ∈ (0,+∞),

F0[u] :=
∫

Ω
|uη − u|2 dx for ᾱ = 0,

F∞[u] :=
{∫

Ω |uη − c|
2 dx if u ≡ c ∈ R,

+∞ otherwise,
for ᾱ = +∞,

and denote by uᾱ := argminu∈L2(Ω) Fᾱ[u] their unique minimizers, given by

uᾱ =


uα if ᾱ = α,

uη if ᾱ = 0,
[uη]Ω if ᾱ = +∞.

(3.12)

Let (αj)j∈N ⊂ (0,+∞) and ᾱ ∈ [0,∞] be such that αj → ᾱ in [0,+∞]. Then we have that uαj → uᾱ
strongly in L2(Ω).

Proof. We treat the cases ᾱ ∈ (0,+∞), ᾱ = 0, and ᾱ = +∞ separately.
Let us first assume that ᾱ ∈ (0,+∞). The proof of this case essentially follows the computations in

[47, Thm. 2.4.20], but since our notation and focus are different, we present a complete proof adapted to
our setting. Being uαj a minimizer of Fαj [u] and uᾱ a minimizer of Fᾱ[u], we get that

uη − uᾱ = ᾱpᾱ with pᾱ ∈ ∂TV [uᾱ],
uη − uαj = αjpαj with pαj ∈ ∂TV [uαj ],

where ∂TV denotes the subdifferential in L2(Ω) of TV (extended to be +∞ on L2(Ω) \BV (Ω)). Multi-
plying the first equality by αj/ᾱ and subtracting the second one from it, we obtain

αj(pᾱ − pαj ) = αj
ᾱ

(uη − uᾱ)− (uη − uαj )

=
(αj
ᾱ
− 1
)

(uη − uᾱ) + uαj − uᾱ.

Multiplying the preceding identity by uᾱ − uαj , integrating over Ω, and using the monotonicity of ∂TV ,
we obtain

0 6
(αj
ᾱ
− 1
)∫

Ω
(uη − uᾱ)(uᾱ − uαj ) dx− ‖uᾱ − uαj‖2L2(Ω).

Consequently, using Cauchy–Schwarz’s inequality, and reorganizing the terms, it follows that

‖uᾱ − uαj‖L2(Ω) 6
|αj − ᾱ|

ᾱ
‖uη − uᾱ‖L2(Ω).

On the other hand, taking into account uᾱ = argminL2(Ω) Fᾱ, we have that

‖uᾱ − uη‖2L2(Ω) 6 ‖uᾱ − uη‖
2
L2(Ω) + ᾱTV (uᾱ,Ω) = Fᾱ[uᾱ] 6 Fᾱ[0] = ‖uη‖2L2(Ω),
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which, together with the preceding estimate, yields

‖uᾱ − uαj‖L2(Ω) 6
|αj − ᾱ|

ᾱ
‖uη‖L2(Ω).

We now consider the ᾱ = 0 case. Because Ω is a bounded, Lipschitz domain, we can find a sequence
(ûκ)κ∈N ∈ C∞(Ω) ⊂ BV (Ω) such that ûκ → uη in L2(Ω). Since (αj)−

1
2 → ∞, we can modify (ûκ)κ∈N

by repeating each of its elements as (finitely) many times as necessary so that the resulting sequence,
denoted by (uj)j∈N, satisfies TV (uj ,Ω) 6 (αj)−

1
2 for all j ∈ N large enough. Thus, uj → uη in L2(Ω)

and limj→∞ αjTV (uj ,Ω) = 0. Using this sequence in the minimality of uαj results in

‖uαj − uη‖2L2(Ω) + αjTV (uαj ) 6 ‖uj − uη‖2L2(Ω) + αjTV (uj),

Because both terms on the right-hand side converge to zero, we conclude that (uαj )j∈N converges to uη
strongly in L2(Ω), as well.

We are left to treat the ᾱ = +∞ case. First, we claim that [uαj ]Ω = [uη]Ω for all j ∈ N. To see this,
we use uαj = argminu∈BV (Ω) Fαj [u] to get for any c ∈ R that

‖uαj − uη‖2L2(Ω) + αjTV (uαj ,Ω) 6 ‖uαj − uη − c‖2L2(Ω) + αjTV (uαj ,Ω).

Thus, ‖uαj − uη‖2L2(Ω) 6 ‖uαj − uη − c‖
2
L2(Ω). Moreover, we also know that

[uαj − uη]Ω = argminc∈R ‖uαj − uη − c‖2L2(Ω)

with only one minimizer by strict convexity, which would lead to a contradiction with the previous
inequality unless [uαj −uη]Ω = 0. In other words, we must have [uαj ] = [uη]Ω for all j ∈ N. To conclude,
we use the estimate Fαj [uαj ] 6 ‖uη‖2L2(Ω) as above, which by the definition of Fαj implies that

lim
j→∞

TV (uαj ,Ω) = 0.

Moreover, by the Poincaré inequality, we have that
‖uαj − [uη]Ω‖L2(Ω) = ‖uαj − [uαj ]Ω‖L2(Ω) 6 C TV (uαj ,Ω).

Thus, (uαj )j∈N converges to [uη]Ω strongly in L2(Ω). �

From the preceding lemma, we immediately deduce the following corollary.

Corollary 3.11. Let Ω ⊂ R2 be a bounded, Lipschitz domain, and let I : (0,+∞) → [0,+∞) be the
function defined in (3.11). Then, I can be extended continuously to a function Î : [0,+∞] → [0,+∞]
defined for ᾱ ∈ [0,+∞] by

Î(ᾱ) =


I(α) = ‖uα − uc‖2L2(Ω) if ᾱ = α ∈ (0,+∞),
‖uη − uc‖2L2(Ω) if ᾱ = 0,
‖[uη]Ω − uc‖2L2(Ω) if ᾱ = +∞.

(3.13)

Remark 3.12. We observe that the only continuity condition on Î needed for our analysis to hold is
that of lower semicontinuity of Î, as given by (2.6). However, because it is not hard to prove continuity
on the whole of [0,+∞] in the TV case, we have done so in the results above, which we believe to be of
interest on their own.

Proof of Theorem 3.8. We will proceed in three steps.
Step 1. We prove that if condition i) in the statement holds (i.e., TV (uη,Ω) − TV (uc,Ω) > 0), then

there exists α ∈ (0,+∞) such that
‖uα − uc‖2L2(Ω) < ‖uη − uc‖

2
L2(Ω). (3.14)

To show (3.14), we first recall (see [18]) that for any α ∈ (0,+∞), there exists a unique uα ∈ BV (Ω) ⊂
L2(Ω) such that

uα = argminu∈L1(Ω) Fα[u] = argminu∈L2(Ω) Fα[u], (3.15)
which allow us to regard Fα as a sum of two convex functionals on L2(Ω) with values in [0,+∞]. Precisely,

Fα[u] = F 1
α[u] + F 2

α[u],
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where, for u ∈ L2(Ω),

F 1
α[u] := ‖u− uη‖2L2(Ω) and F 2

α[u] :=
{
αTV (u,Ω) if u ∈ BV (Ω),
+∞ otherwise.

Denoting by ∂F (v) ∈ (L2(Ω))′ ∼= L2(Ω) the subdifferential of a convex functional F : L2(Ω)→ [0,+∞]
at v ∈ L2(Ω), we conclude from (3.15) that

0 ∈ ∂Fα(uα) or, equivalently, 2(uη − uα) ∈ ∂F 2
α(uα).

Consequently,

0 > F 2
α[uα]− F 2

α[uc] +
∫

Ω
2(uη − uα)(uc − uα) dx

> F 2
α[uα]− F 2

α[uc] +
∫

Ω
2(uη − uα)(uc − uα) dx− ‖uα − uη‖2L2(Ω)

= α
(
TV (uα,Ω)− TV (uc,Ω)

)
+ ‖uα − uc‖2L2(Ω) − ‖uη − uc‖

2
L2(Ω).

Hence,
‖uη − uc‖2L2(Ω) − ‖uα − uc‖

2
L2(Ω) > α

(
TV (uα,Ω)− TV (uc,Ω)

)
. (3.16)

We claim that
TV (uα,Ω)↗ TV (uη,Ω) as α↘ 0. (3.17)

Assuming that the preceding claim holds, the condition TV (uη,Ω) − TV (uc,Ω) > 0 allows us to find
α̃ ∈ (0,+∞) for which the left-hand side of (3.16) with α = α̃ is strictly positive. Thus, ‖uη−uc‖2L2(Ω) >

‖uα̃ − uc‖2L2(Ω), which proves (3.14).
To conclude Step 1, we are left to prove (3.17). Using (3.15), for all α, β ∈ (0,+∞) with α < β, we

have that
βTV (uβ ,Ω) 6 Fβ [uβ ] 6 Fβ [uη] = βTV (uη,Ω)

and
‖uα − uη‖2L2(Ω) + αTV (uα,Ω) 6 ‖uβ − uη‖2L2(Ω) + αTV (uβ ,Ω)

= ‖uβ − uη‖2L2(Ω) + βTV (uβ ,Ω) + (α− β)TV (uβ ,Ω)
6 ‖uα − uη‖2L2(Ω) + βTV (uα,Ω) + (α− β)TV (uβ ,Ω),

from which we get that
βTV (uβ ,Ω) 6 βTV (uη,Ω) and (α− β)TV (uα,Ω) 6 (α− β)TV (uβ ,Ω).

Hence, recalling that β > 0 and α − β < 0, it follows that TV (uβ ,Ω) 6 TV (uη,Ω) and TV (uα,Ω) >
TV (uβ ,Ω). Finally, using the first of these estimates and Lemma 3.10 with an arbitrary decreasing
sequence (βj)j∈N converging to 0, the lower-semicontinuity of the total variation with respect to the
strong convergence in L1 yields

TV (uη,Ω) > lim sup
j→∞

TV (uβj ,Ω) > lim inf
j→∞

TV (uβj ,Ω) > TV (uη,Ω).

This concludes the proof of (3.17).

Step 2. We prove that if condition ii) in the statement holds, (i.e., ‖uη−uc‖2L2(Ω) < ‖[uη]Ω−uc‖2L2(Ω)),
then there exits α ∈ (0,+∞) such that

‖uα − uc‖2L2(Ω) < ‖[uη]Ω − uc‖2L2(Ω). (3.18)

Using Corollary 3.11 with ᾱ = 0 together with ii), we obtain

lim sup
j→∞

‖uαj − uc‖L2(Ω) 6 lim sup
j→∞

(
‖uαj − uη‖L2(Ω) + ‖uη − uc‖L2(Ω)

)
= ‖uη − uc‖L2(Ω) < ‖[uη]Ω − uc‖L2(Ω),

from which (3.18) follows.

Step 3. We conclude the proof of Theorem 3.8.
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We first show (3.11). Because Î is a lower-semicontinuous function on the compact set [0,+∞], Î
attains a minimum on [0,+∞]. By (3.13), (3.14), and (3.18), we conclude that Î attains its minimum at
some α∗ ∈ (0,+∞). Thus, using (3.13) once more,

I(α∗) = Î(α∗) = min
ᾱ∈[0,+∞]

Î(ᾱ) = min
α∈(0,+∞)

Î(α) = min
α∈(0,+∞)

I(α), (3.19)

which yields (3.11).
Next, to prove the existence of cΩ as stated, assume that there exist (α∗j )j∈N ⊂ (0,+∞) such that

α∗j → 0 and (3.19) holds with α∗ = α∗j . Then, using the lower semi-continuity of Î on [0,+∞],

min
ᾱ∈[0,+∞]

Î(ᾱ) 6 Î(0) 6 lim inf
j→∞

Î(α∗j ) = min
ᾱ∈[0,+∞]

Î(ᾱ),

which is false by (3.14). This establishes the existence of the constant cΩ.
On the other hand, as mentioned in the proof of Proposition 3.5, [47, Proposition 2.5.7] yields a positive

constant, CΩ, such that uα ≡ [uη]Ω for all α > CΩ‖uη‖L2(Ω). This fact, (3.18), and (3.19) show that we
must have α∗Ω < CΩ‖uη‖L2(Ω). Finally, the Ω = L case follows from Proposition 3.5. �

Next, we prove Theorem 1.4.

Proof of Theorem 1.4. In view of Theorem 3.6 (also see Remark 3.7), the statement in (a) follows. Con-
versely, the statement in (b) can be proved arguing as in Subsection 3.1 and defining

c0 := min
{

min
L∈L∈P̄

cL,
(
cQ‖uη‖2L2(Q)

)−1
}
,

where cL and CQ are the constants given by Theorem 3.8. �

We conclude this section with some examples of stopping criteria for the refinement of the admissible
partitions as defined in Definition 1.2.

Example 3.13. Here, we give an example of a stopping criterion that, heuristically, means that we only
refine a given dyadic square L, if the distance of the restored image in L to the clean image is greater
than or equal to the sum of the distances of the restored images in each of the subdivisions of L to the
clean image, modulo a threshold that is determined by the user.

To make this idea precise, we introduce some notation. Given a dyadic square L(1) ⊂ Q of side length
1

2k+1 , we can find three other dyadic squares, which we denote by L(2), L(3), and L(4), of side length 1
2k+1

and such that L := ∪4
i=1L

(i) is a dyadic square of side length 1
2k . We observe further that L(2), L(3),

and L(4) are uniquely determined by the requirement that L is a dyadic square. Using this notation, and
setting uL = uαL (see (1.5)), we fix δ > 0 and set up an admissible criteria as follows:

(S) (i) Q is admissible;

(ii) If L ⊂ Q is an admissible dyadic square, then each dyadic square L(i) ⊂ L,

with i ∈ {1, ..., 4} and ∪4
i=1L

(i) = L, is admissible if

‖uc − uL‖2L2(L) >
4∑
i=1
‖uc − uL(i)‖2L2(L(i)) + δ. (3.20)

As we prove next,
P̄ :=

{
L∈ P: L satisfies (S) for all L ∈ L

}
has finite cardinality, which shows that (S) as above provides a stopping criteria for the refinement of the
admissible partition.

To show that P̄ has finite cardinality, we first observe that if L satisfies (S), then we can find k dyadic
squares, L1, ..., Lk, where k ∈ N is such that |L| = 1

4k , satisfying

Q = L1 ⊃ .... ⊃ Lk ⊃ L, |Lk| =
1

4k−1 , Lk satisfies (S).

Then, using (3.20), we conclude that
‖uc − uQ‖2L2(Q) = ‖uc − uL1‖2L2(L1) > ck + kδ

for some positive constant ck, which can only hold true if k is small enough. In other words, there exists
kδ ∈ N such that if L satisfies (S), then |L| > 1

4kδ . Hence, P̄ has finite cardinality.
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4. Analysis of the Regularized Weighted-TV and Weighted-Fidelity learning schemes
(LS)TVωε and (LS)TV−Fidω

The results proved in the preceding section for the weighted-TV learning scheme can be easily adapted
to the case of the regularized weighted-TV and the weighted-fidelity learning schemes, (LS)TVωε and
(LS)TV−Fidω . For the former, we prove here only Proposition 1.6 and provide an example of a sequence
of regularized weights satisfying the conditions assumed in this result. Moreover, we highlight a question
that is intimately related to the convergence of the solutions to (LS)TVωε as ε→ 0+ (see Subsection 4.1
below). Regarding (LS)TV−Fidω , and for completeness, we state the analogue existence and equivalence
results for the weighted-fidelity learning scheme (see Subsection 4.2 below).

4.1. The (LS)TVωε learning scheme. Next, we prove Proposition 1.6 and provide an example of a
sequence (ωεL)ε as in (1.14).

Proof of Proposition 1.6. We show that
EεL[u] 6 EL[u] (4.1)

for all u ∈ L1(Q), from which (1.15) follows.
Let u ∈ L1(Q) be such that EL[u] < ∞. Then, u ∈ BVωL

(Q) and recalling the definition and
properties of the space of weighted BV -function discussed in Section 3.2, we have that u ∈ BVωε

L
(Q) with

TVωε
L
(u,Q) 6 TVωL

(u,Q), using the estimate ωεL 6 ωL a.e. in Q in (1.14). Thus, (4.1) holds. �

Example 4.1. An example of a sequence (ωεL)ε as in (1.14) can be constructed combining a diagonal-
ization argument with a mollification of a Moreau–Yosida type approximation of ωsc−L . Precisely, for each
k ∈ N, let ωk : Q→ (0,∞) be given by

ωk(x) := inf
{
ωsc

−

L (y) + k|x− y| : y ∈ Q
}

for x ∈ Q. (4.2)

We recall that each ωk is a k-Lipschitz function, and we have (see [15, Theorem 2.1.2] for instance)

ωk ↗ ωsc
−

L pointwise everywhere in Q. (4.3)

Moreover, as we show next,
lim
k→∞

‖ωk − ωsc
−

L ‖L∞(K) = 0 (4.4)

for any compact set K such that K ⊂ int(L), where L ∈ L is arbitrary.
In fact, let L ∈ L and let K be a compact set such that K ⊂ int(L). Fix τ > 0 and set δ := dist(K,∂L)

2 .
Note that δ > 0 and

ωsc
−

L (x) = αL for all x ∈ int(L) (4.5)
because ωL(x) = αL for all x ∈ L. Moreover, using (4.2), given x̄ ∈ K we can find yk ∈ Q such that

ωk(x̄) + τ > ωsc
−

L (yk) + k|x̄− yk|. (4.6)

Hence, using (4.3) and nonnegativity of ωsc− , we obtain

|x̄− yk| 6
ωk(x̄) + τ − ωsc−L (yk)

k
6
‖ωsc−L ‖L∞(Q) + τ

k
< δ

for all k > k0 and for some k0 ∈ N that is independent of x̄. Then, yk ∈ int(L) for all k > k0.
Consequently, (4.5)–(4.6) then yield

ωk(x̄) + τ > ωsc
−

L (yk) = αL = ωsc
−

L (x̄)

for all k > k0. Hence,
0 6 ωsc

−

L (x̄)− ωk(x̄) 6 τ
for all k > k0. Taking the supremum on x̄ ∈ K in the preceding estimate yields (4.4).

On the other hand, for each k ∈ N, a standard mollification argument yields a sequence (ω(k)
ε )ε ⊂

C∞(Q) such that
lim
ε→0+

‖ω(k)
ε − ωk‖L∞(Q) = 0. (4.7)
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Finally, denoting by Q(x, δ) the open square centered at x ∈ R2 and side-length δ, we can write
L = ∪`i=1Li with int(Li) = Q(xi, δi), for some ` ∈ N, xi ∈ Li, and δi > 0. Then, exploiting the
countability of the family

K := ∪`i=1{Ki := Q(xi, ri) : ri ∈ Q ∩ (0, δi)} (4.8)

and a diagonalization argument together with (4.4) and (4.7), we can find a sequence (ωεL)ε such that

lim
ε→0+

‖ωεL− ωsc
−

L ‖L∞(K) = 0 (4.9)

for all compact set K ∈ K. From the definition of K in (4.8), we get that (4.9) also holds for all compact
set K ⊂ int(L) and for any L ∈ L. Furthermore, using the fact that mollification preserves monotonicity,
we deduce from (4.3) and (4.7) that ωεL↗ ωsc

−

L everywhere in Q.
To conclude that (1.14) also holds, it suffices to observe that ωsc−L 6 ωL in Q, ωsc−L ≡ ωL in
∪`i=1 int(Li), |Q \ ∪`i=1 int(Li)| = 0.

Remark 4.2 (Existence of solutions to the learning scheme (LS)TVωε ). For fixed ε, we can
apply the results proved in Section 3. In particular, there exists an optimal solution u∗ε to the learning
scheme (LS)TVωε in (1.12) with (1.13) replaced by (1.11) (cf. Theorem 1.5).

Remark 4.3. An interesting question is whether condition (1.14) yields the convergence
lim
ε→0+

TVωε
L
(u,Q) = TVωL

(u,Q) (4.10)

for all u ∈ BVωL
(Q). Because sets of zero Lebesgue measure may not have zero |Du| measure, we do

not expect (4.10) to hold unless the almost everywhere pointwise convergence in (1.14) is replaced by
everywhere pointwise convergence.

To the best of our knowledge, the closest result in this direction is [15, Lemma 2.1.4], which shows
the following. If ω̃ > 0 is lower semi-continuous in Q and u : Q → R is measurable, then we can find a
sequence of Lipschitz weights, (ω̃(u)

k )k∈N, depending on u, such that ω̃(u)
k ↗ ω̃ pointwise everywhere in Q

and (4.10) holds (with ωεL and ωL replaced by ω̃(u)
k and ω̃, respectively).

4.2. The (LS)TV−Fidω learning scheme. Given a dyadic square L ⊂ Q and α ∈ (0,∞), we have

argmin
{

1
α

∫
L

|uη − u|2 dx+ TV (u, L) : u ∈ BV (L)
}

= argmin
{∫

L

|uη − u|2 dx+ αTV (u, L) : u ∈ BV (L)
}
.

Consequently, Proposition 3.5 and Theorem 3.8 remain unchanged if we replace (1.6) by (1.18). These
two results are the main tools to prove Theorems 1.4 and 1.5. Using this observation, the arguments
used in Section 3 can be reproduced here for the weighted-fidelity learning scheme to conclude the two
following theorems.

Theorem 4.4 (Existence of solutions to (LS)TV−Fidω). There exists an optimal solution u∗ to the
learning scheme (LS)TV−Fidω in (1.16) with (1.17) replaced by (1.11).

As before, the previous existence theorem holds true under any stopping criterion for the refinement
of the admissible partitions provided that the training data satisfies suitable conditions, as stated in the
next result.

Theorem 4.5 (Equivalence between box constraint and stopping criterion). Consider the
learning scheme (LS)TV−Fidω in (1.16). The two following conditions hold:

(a) If we replace (1.17) by (1.11), then there exists a stopping criterion (S) for the refinement of the
admissible partitions as in Definition 1.2.

(b) Assume that there exists a stopping criterion (S) for the refinement of the admissible partitions
as in Definition 1.2 such that the training data satisfies for all L ∈ ∪L∈P̄L, with P̄ as in
Definition 1.2, the conditions

(i) TV (uc, L) < TV (uη, L);
(ii) ‖uη − uc‖2L2(L) < ‖[uη]L − uc‖2L2(L).
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Then, there exists c0 ∈ R+ such that the optimal solution u∗ provided by (LS)TV−Fidω with P

replaced by P̄ coincides with the optimal solution u∗ provided by (LS)TV−Fidω with (1.17) replaced
by (1.11).

5. Analysis of the Weighted-TGV learning scheme (LS)TGVω
This section is devoted to proving the existence of solutions to the training scheme (LS)TGVω described

in (1.20). We begin by providing the precise definition of the quantities Vω0
L
and Vω1

L
in (1.24), which are

particular instances of the general definition of the weighted variation of a Radon measure introduced in
Section 2 (see (2.4)).

Definition 5.1. Let Ω be an open set in Rn and ω : Ω → [0,+∞) a locally integrable function. Given
u ∈ L1

ω,loc(Ω) and v ∈ L1
ω,loc(Ω;Rn) (see (3.2)), we set

Vω(Du− v,Ω) := sup
{∫

Ω
(udivϕ+ v · ϕ) dx : ϕ ∈ Lipc(Ω;Rn), |ϕ| 6 ω

}
(5.1)

and
Vω(Ev,Ω) := sup

{∫
Ω

(v · div ξ) dx : ξ ∈ Lipc(Ω;Rn×nsym ), |ξ| 6 ω
}
, (5.2)

where (div ξ)j =
∑n
k=1

∂ξjk
∂xk

for each j ∈ {1, ..., n}.

Remark 5.2. Recalling (2.4), we are using an abuse of notation in the preceding definition as we are
not requiring Du nor Ev to be Radon measures. However, if u ∈ BV (Ω), then (5.1) is the ω-weighted
variation of the Radon measure Du − v := Du − vLnbΩ ∈ M(Ω;Rn) in the sense of (2.4). Similarly, if
v ∈ BD(Ω), then (5.2) is the ω-weighted variation of the Radon measure Ev ∈M(Ω;Rn×nsym ) in the sense
of (2.4).

Analogously to the (LS)TVω case, we analyze each level of (LS)TGVω in a dedicated subsection.
To prove existence of a solution to the learning scheme (LS)TGVω in (1.20), we argue by a box-constraint

approach in which we replace the requirement α = (α0, α1) ∈ R+ × R+ by the stricter condition (1.29).
In this case, we replace (1.21) by

ᾱL = inf
{

argmin
{∫

L

|uc − uα,L|2 dx : α ∈
[
c0,

1
c0

]
×
[
c1,

1
c1

]}}
. (5.3)

Throughout this section, for u ∈ L2(Ω), we denote by 〈u〉Ω the affine projection of u given by the
unique solution to the minimization problem

min
{∫

Ω
|u− v|2 dx : v is affine in Ω

}
, (5.4)

which will play an analogous role to the average [u]Ω in the TV case treated in Section 3. Note that we
have the orthogonality property ∫

Ω
(u− 〈u〉Ω)〈u〉Ω dx = 0 (5.5)

for every u ∈ L2(Ω), since 〈u〉Ω is the Hilbert projection of u onto a finite dimensional subspace of L2(Ω).

5.1. On Level 3. We provide here an analysis of Level 3, and minor variants thereof, of the learning
scheme (LS)TGVω in (1.20).

As in the weighted TV scheme case, the parameter αL in Level 3 of (LS)TGVω (see (1.21)) is uniquely
determined by definition, and it satisfies αL ∈ [0,+∞]2. In view of Theorem 5.13 (see Subsection 5.4), if
L ∈ L is such that

TGVα̂0,α̂1(uc, L) < TGVα̂0,α̂1(uη, L) and ‖uη − uc‖2L2(L) < ‖〈uη〉L − uc‖
2
L2(L) (5.6)

for some α̂ = (α̂0, α̂1), then

arginf
{∫

L

|uc − uα,L|2 dx : α ∈ R+ × R+
}

=

argmin
{∫

L

|uc − uα,L|2 dx : α ∈ R+ × R+ is s.t. cL 6 min{α0, α1} < CQ‖uη‖L2(L)

}
,
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where cL and CQ are positive constants, with cQ depending only on Q. Furthermore, because each
partition L∈ P is finite, it follows that if (5.6) holds for all L ∈ L, then

αL ∈
[

min
L∈L

cL,+∞
]
×
[

min
L∈L

cL,+∞
]
\ {(+∞,+∞)}. (5.7)

Moreover, if we consider Level 3 with (1.21) replaced by (5.3), then the minimum

min
α∈[c0, 1

c0
]×[c1, 1

c1
]

∫
L

|uc − uα,L|2 dx

exists as the minimum of a lower semicontinuous function (see Lemma 5.18 in Subsection 5.4) on a
compact set. In particular, ᾱL in (5.3) is uniquely determined and belongs to the set in (1.29).

5.2. On Level 2. In this subsection, we discuss the existence of solutions to (1.23). In what follows,
let Ω ⊂ Rn be an open set and ω : Ω → [0,∞) a locally integrable function. Recalling the definition of
L1
ω,loc(Ω) and ‖ · ‖L1

ω(Ω) in Subsection 3.2, as well as (5.2), we define the space BDω(Ω) of ω-weighted
BD functions in Ω by

BDω(Ω) :=
{
v ∈ L1

ω(Ω;Rn) : Vω(Ev,Ω) <∞
}
,

and we endow it with the semi-norm
‖v‖BDω(Ω) := ‖v‖L1

ω(Ω;Rn) + Vω(Ev,Ω).
Note that if ess infΩ ω > 0, the semi-norm above is actually a norm, and that BDω with ω ≡ 1 coincides
with the classical space of functions with bounded deformation, cf. [62] for instance. The instrumental
properties of BDω for our analysis are collected in the ensuing result.

Theorem 5.3. Let Ω ⊂ Rn be an open set and ω : Ω→ [0,∞) a locally integrable function. Then, the
following statements hold:

(i) If infΩ ω > 0, then the map v 7→ Vω(Ev,Ω) is lower-semicontinuous with respect to the (strong)
convergence in L1

ω,loc(Ω;Rn).
(ii) Given v ∈ L1

ω,loc(Ω;Rn), we have Vω(Ev,Ω) = Vωsc− (Ev,Ω), where ωsc
− denotes the lower-

semicontinuous envelope of ω.
(iii) Assume ω is lower-semicontinuous and strictly positive. Then, we have v ∈ L1

loc(Ω;Rn) and
Vω(Ev,Ω) < ∞ if and only if v ∈ BDloc(Ω) and ω ∈ L1(Ω; |Ev|). If any of these two equivalent
conditions hold, we have

Vω(Ev,B) =
∫
B

ω(x) d|Ev|(x)

for every Borel set B ⊂ Ω.
(iv) If ω ∈ L∞loc(Ω) is lower-semicontinuous and strictly positive, then all bounded sequences in

BDω(Ω) are precompact in the strong L1
ω,loc-topology.

Proof. Accounting for the fact that test functions here take values in Rn×nsym , the proof of (i), (ii), and
(iii) may be obtained by mimicking that of [15, Proposition 1.3.1], [15, Proposition 2.1.1], and [15,
Theorem 2.1.5], respectively.

To prove (iv), we observe that for each compact set K ⊂ Ω, there exists a positive constant cK such
that 0< 1

cK
6 ω 6 cK in K because ω ∈ L∞loc(Ω) and strictly positive lower-semicontinuous functions are

locally bounded away from zero. Then, using (iii), we have for every v ∈ BDω(Ω) that

Vω(Ev,K) =
∫
K

ω(x) d|Ev|(x)
{
> 1

cK
|Ev|(K),

6 cK |Ev|(K),

‖v‖L1
ω(K;Rn) =

∫
Ω
|v(x)|ω(x) dx

{
> 1

cK
‖v‖L1(K;Rn),

6 cK‖v‖L1(K;Rn).

The preceding estimates and the compact embedding of BD(K) into L1(K;Rn) (cf. [62]) yield (iv). �

Remark 5.4. If ω : Ω → (0,∞) is a lower-semicontinuous function satisfying 0 < c 6 infΩ ω 6
supΩ ω 6 c−1 for some positive constant c, then the arguments in the preceding proof show that Theo-
rem 5.3 (iv) holds globally in Ω. In other words, bounded sequences in BDω(Ω) are precompact in the
strong L1

ω(Ω;Rn)-topology.
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Remark 5.5. Differently from the weighted-TV case (cf. Theorem 3.1), we need the weights ω in
Theorem 5.3 to be bounded from below away from zero for item (i) to hold. This is because one cannot
resort to arguments based on coarea formulas in the symmetrized gradient case, which prevents us to
adapt the arguments in [15, Remark 1.3.2 and Theorem 3.1.13] to this framework.

The next result collects some basic properties of the quantity Vω(Du− v,Ω) given by (5.1).

Theorem 5.6. Let Ω ⊂ Rn be an open set and ω : Ω → [0,∞) a locally integrable function. Let
u ∈ BVω(Ω). Then, the following statements hold:

(i) The map v → Vω(Du − v,Ω) is lower semicontinuous with respect to the strong convergence in
L1
ω,loc(Ω;Rn).

(ii) Given v ∈ L1
ω,loc(Ω;Rn), we have Vω(Du − v,Ω) = Vωsc− (Du − v,Ω), where ωsc− denotes the

lower-semicontinuous envelope of ω.
(iii) If v ∈ L1

ω,loc(Ω;Rn) and ω ∈ L1(Ω; |Du− v|) is lower-semicontinuous and strictly positive, then

Vω(Du− v,B) =
∫
B

ω(x) d|Du− v|(x) (5.8)

for every Borel set B ⊂ Ω.

Proof. To prove (i), let (vk)k∈N ⊂ L1
ω,loc(Ω;Rn) be a sequence such that vk → v strongly in L1

ω,loc(Ω;Rn).
Then, by Definition 5.1,

Vω(Du− vk,Ω) >
∫

Ω

(
udivϕ+ vk · ϕ

)
dx

for every ϕ ∈ Lipc(Ω;Rn) with |ϕ| 6 ω in Ω. Moreover, for all such ϕ,∫
Ω
|vk − v||ϕ| dx 6

∫
suppϕ

|vk − v|ω dx→ 0 as k → +∞.

Hence,

lim inf
k→+∞

Vω(Du− vk,Ω) >
∫

Ω

(
udivϕ+ v · ϕ

)
dx,

from which the conclusion follows by taking the supremum over all test functions ϕ ∈ Lipc(Ω;Rn) with
|ϕ| 6 ω in Ω.

The proof of (ii) follows by Definition 5.1, observing that every map ϕ ∈ Lipc(Ω;Rn) with |ϕ| 6 ω in
Ω also satisfies |ϕ| 6 (ωsc)− in Ω.

As we discuss next, the proof of (iii) is an adaptation of [15, Theorem 2.1.5]. In fact, because
u ∈ BVω(Ω) and strictly positive lower-semicontinuous functions are locally bounded away from zero, we
have u ∈ BVloc(Ω). Then, for every ϕ ∈ Lipc(Ω;Rn) with |ϕ| 6 ω in Ω, we have that∫

Ω

(
udivϕ+ v · ϕ

)
dx 6

∫
Ω
ω d|Du− v|;

hence, Vω(Du− v,Ω) 6
∫

Ω ω d|Du− v|. Conversely, since ω ∈ L1(Ω; |Du− v|), we infer that∫
Ω
ω d|Du− v| = |ω(Du− v)|(Ω) = sup

{∫
Ω
ω ψ · d(Du− v) : ψ ∈ Lipc(Ω;Rn), |ψ| 6 1

}
. (5.9)

Let (ωk)k∈N be an increasing sequence of k-Lipschitz functions converging to ω in Ω as in Example 4.1 (see
also [15, Theorem 2.1.2]). Then, for every ψ ∈ Lipc(Ω;Rn) with |ψ| 6 1 in Ω, we have ωk ψ ∈ Lipc(Ω;Rn)
with |ωk ψ| 6 ωk 6 ω in Ω; thus, using the Lebesgue dominated convergence theorem and recalling (5.1),
we find that ∫

Ω
ω ψ · d(Du− v) = lim

k→∞

∫
Ω
ωk ψ · d(Du− v)

= − lim
k→∞

∫
Ω

(
udiv (ωk ψ) + ωk ψ · v

)
dx 6 Vω(Du− v,Ω).

From this estimate and (5.9), we deduce that
∫

Ω ω d|Du−v| 6 Vω(Du−v,Ω), which concludes the proof
of (5.8) when B = Ω. The proof that this identity holds for every Borel set B ⊂ Ω can be done exactly
as in [15, Theorem 2.1.5]. �
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We proceed by showing that the infimum in
TGVω0,ω1(u,Q) := inf

v∈BDω1 (Q)

{
Vω0(Du− v,Q) + Vω1(Ev,Q)

}
, (5.10)

where ω0, ω1 : Q→ (0,+∞) are bounded functions and u ∈ L1
ω0

(Q), is actually a minimum, and that the
contributions due to Vω0 and Vω1 can be expressed in a simplified way in terms of the lower semicontinuous
envelopes of the weights ω0 and ω1. We begin with a technical lemma.

Lemma 5.7. Let c0 > 0 be a positive constant. For i ∈ {0, 1}, let ωi : Q → (0,+∞) be such that
c0 < infQ ωi < supQ ωi < 1

c0
, and let u ∈ L1

ω0,loc(Q). Then, for every v ∈ L1
ω1

(Q;Rn), we have

‖v‖L1
ω1 (Q;Rn) 6

1
c20

(
Vω0(Du− v,Q) + TVω0(u,Q)

)
. (5.11)

Proof. Fix v ∈ L1
ω1

(Q;R2). Note that the uniform bounds on ω1 yield

c0

∫
Q

|v(x)| dx 6
∫
Q

ω1(x)|v(x)| dx = ‖v‖L1
ω1 (Q;Rn) 6

1
c0

∫
Q

|v(x)| dx. (5.12)

In particular, v ∈ L1(Q;R2); thus,

c0

∫
Q

|v(x)| dx = c0 sup
{∫

Q

ψ(x) · v(x) dx : ψ ∈ Lipc(Q;R2), ‖ψ‖L∞(Q;R2) 6 1
}

= sup
{∫

Q

ψ̃(x) · v(x) dx : ψ̃ ∈ Lipc(Q;R2), ‖ψ̃‖L∞(Q;R2) 6 c0

}
6 sup

{∫
Q

ϕ(x) · v(x) dx : ϕ ∈ Lipc(Q;R2), |ϕ| 6 ω0

}
6 Vω0(Du− v,Q) + TVω0(u,Q),

(5.13)

where we used Definition 5.1 together with the subadditivity of the supremum in the last estimate, and
the bound c0 6 infQ ω0 in the preceding one. We then obtain (5.11) by combining (5.12) and (5.13). �

Under the same assumptions of Lemma 5.7, the infimum problem in (1.24) is actually a minimum.

Lemma 5.8. Let c0 > 0 be a positive constant. For i ∈ {0, 1}, let ωi : Q → (0,+∞) be such that
c0 < infQ ωi < supQ ωi < 1

c0
, and let u ∈ L1(Q). Then, there exists u∗ ∈ BDω1(Q) such that

TGVω0,ω1(u,Q) = Vω0(Du− u∗, Q) + Vω1(Eu∗, Q). (5.14)

Proof. We claim that TGVω0,ω1(u,Q) is finite if and only if u ∈ BVω0(Q). In fact, choosing v = 0 as a
competitor in (5.10), we infer that TGVω0,ω1(u,Q) 6 TVω0(u,Q). On the other hand, recalling (3.3), we
have for any v ∈ BDω1(Q) that

TVω0(u,Q) = sup
{∫

Q

(udivϕ+ v · ϕ− v · ϕ) dx : ϕ ∈ Lipc(Ω;R2), |ϕ| 6 ω0

}
6 Vω0(Du− v,Q) + ‖v‖L1

ω0 (Q;R2)

6 Vω0(Du− v,Q) + 1
c20
‖v‖L1

ω1 (Q;R2),

where we used the subadditivity of the supremum combined with Definition 5.1 in the first inequality, and
the bounds on the two weights in the second inequality. Thus, TVω0(u,Q) 6 max{1, c−2

0 }TGVω0,ω1(u,Q),
which concludes the proof of the claim.

To show (5.14), we may assume without loss of generality that TGVω0,ω1(u,Q) < ∞, in which case
u ∈ BVω0(Q). Moreover, we may find a sequence (vn) ⊂ BDω1(Q) such that

TGVω0,ω1(u,Q) = lim
n→+∞

{
Vω0(Du− vn, Q) + Vω1(Evn, Q)

}
6 C (5.15)

for some positive constant C. From Lemma 5.7 and (5.15) we infer that supn∈N ‖vn‖BDω1 (Q) < +∞.
Using the uniform bounds on ω1, which are inherited by its lower semicontinuous envelope (ω1)sc− , and
Theorem 5.3 (ii), also

sup
n∈N
‖vn‖BD

(ω1)sc−
(Q) < +∞.
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Moreover, by Theorem 5.3 (i), (ii), and (iv) (also see Remark 5.4), there exists u∗ ∈ BDω1(Q) ∩
BD(ω1)sc− (Q) such that

vn → u∗ strongly in L1
(ω1)sc− (Q;R2),

Vω1(Eu∗,Ω) = V(ω1)sc− (Eu∗,Ω) 6 lim inf
n→+∞

V(ω1)sc− (Evn,Ω) = lim inf
n→+∞

Vω1(Evn,Ω). (5.16)

Using the uniform bounds on both weights once more, we also have vn → u∗ strongly in L1
ω0

(Q;R2). The
minimality of u∗ is then a direct consequence of Theorem 5.6 (i), (5.16), and (5.15). �

The next result provides a characterization of the infimum problem in Level 2 of our learning scheme.

Proposition 5.9. Let φ ∈ L2(Q), and let c0 > 0 be a positive constant. For i ∈ {0, 1}, let ωi : Q →
[0,+∞) be such that c0 < infQ ωi < supQ ωi < 1

c0
. Then, there exists a unique ū ∈ BVω0(Q) such that∫

Q

|φ− ū| dx+ TGVω0,ω1(ū, Q) = min
u∈BVω0 (Q)

{∫
Q

|φ− u|2 dx+ TGVω0,ω1(u,Q)
}
.

Moreover, denoting by (ωi)sc− the lower semicontinuous envelope of ωi, i ∈ {0, 1}, we have ū ∈ BV (Q)∩
BV(ω0)sc− (Q), and

TGVω0,ω1(ū) =
∫
Q

(ω0)sc− d|Dū− u∗|+
∫
Q

(ω1)sc− d|Eu∗|,

where u∗ ∈ BDω1(Q) ∩BD(ω1)sc− (Q) is a minimizer of (5.10) associated to ū.

Proof. For u ∈ BVω0(Q), we define

H[u] :=
∫
Q

|φ− u|2 dx+ TGVω0,ω1(u,Q),

and we set
µ := inf

u∈BVω0 (Q)
H[u].

We have 0 6 µ 6 F [0] = ‖φ‖2L2(Q), and we may take a sequence (un)n∈N ⊂ BVω0(Q) such that

µ = lim
n→+∞

H[un].

Moreover, the boundedness assumptions on the weights ωi, i ∈ {0, 1}, yield for all x ∈ Q that

c0 6 (ωi)sc−(x) 6 1
c0
.

Thus, by Lemma 5.8 and Theorems 5.3 and 5.6, we find for all n ∈ N large enough that

µ+ 1 > H[un] =
∫
Q

|φ− un|2 dx+ Vω0(Dun − u∗n, Q) + Vω1(Eu∗n, Q)

=
∫
Q

|φ− un|2 dx+ V(ω0)sc− (Dun − u∗n, Q) + V(ω1)sc− (Eu∗n, Q)

=
∫
Q

|φ− un|2 dx+
∫
Q

(ω0)sc− d|Dun − u∗n|+
∫
Q

(ω1)sc− d|Eu∗n|

>
∫
Q

|φ− un|2 dx+ c0|Dun − u∗n|(Q) + c0|Eu∗n|(Q).

An argument by contradiction as in the classical TGV case and variants thereof (see, e.g., [29, Proposi-
tion 5.3]) yields that the sequences (u∗n)n∈N and (un)n∈N are uniformly bounded in BD(Q) and BV (Q),
respectively. Thus, there exist ū∗ ∈ BD(Q) and u ∈ BV (Q) such that, up to extracting a not relabelled
subsequence,

un
∗
⇀ ū weakly* in BV (Q),

u∗n
∗
⇀ ū∗ weakly* in BD(Q).
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By the bounds on the weights, and their lower-semicontinuous envelopes, and Theorems 5.3 and 5.6, we
deduce that ū ∈ BV(ω0)sc− (Q) ∩BVω0(Q) ∩BV (Q) and ū∗ ∈ BD(ω1)sc− (Q) ∩BDω1(Q) ∩BD(Q), with

µ 6 H[ū] 6
∫
Q

|φ− ū|2 dx+ V(ω0)sc− (Dū− ū∗, Q) + V(ω1)sc− (E ū∗, Q) (5.17)

6 lim
n→+∞

H[un] = µ.

Because of the strict convexity of the L2-norm, we infer the uniqueness of ū. Finally, by (5.17),

TGVω0,ω1(ū, Q) = V(ω0)sc− (Dū− ū∗, Q) + V(ω1)sc− (E ū∗, Q).

The last part of the statement is then a consequence of Theorems 5.3 and 5.6. �

5.3. On Level 1. As we address next, and similarly to the (LS)TVω case, the box constraint provides a
stopping criterion for the TGV -learning scheme.

To proceed as in Theorem 3.6, we need an analog to Proposition 3.5, which we now prove. Recalling
that L represents a cell in a dyadic partition of Q, we will use the Sobolev inequality in BV (L) yielding
for every u ∈ BV (L) that

‖u− [u]L‖L2(L) 6 C
BV
Q |Du|(L), (5.18)

where [u]L ∈ R is the average of u in L, and the constant CBVQ depends only on the shape of Q because
of scale invariance of the embedding BV in L2 in dimension d = 2. Moreover, we also have for any
w ∈ BD(L) that

‖w −RMw
− vw‖L2(L) 6 C

BD
Q |Ew|(L), (5.19)

where vw ∈ R2, Mw is a skew-symmetric matrix (that is, with M> +M = 0, the set of which we denote
by R2×2

skew), and RMw denotes the function defined for Mw ∈ R2×2 by RMw(x) = Mwx.

Lemma 5.10. Let L ⊂ Q be a dyadic square. Then, there is a constant CrotQ > 0 such that for every
u ∈ BV (L) and for every skew-symmetric matrix M ∈ R2×2

skew, we have

CrotQ |Du|(L) 6 |Du−RM |(L). (5.20)

Proof. Suppose that (5.20) does not hold; then, we may find functions un ∈ BV (L) with |Dun|(L) = 1
and skew-symmetric matrices Mn ∈ R2×2

skew for which
1
n

= 1
n
|Dun|(L) > |Dun −RMn |(L). (5.21)

Then, in particular, ‖RMn
‖L1(L) 6 2; consequently, since R2×2

skew is a finite-dimensional set, we can assume
that RMn

→ RM∞ for some skew-symmetric matrix M∞, up to taking a not relabelled subsequence.
On the other hand, recalling (5.18), there are constants cn ∈ R satisfying

‖un − cn‖L2(L) 6 C
BV
Q |Dun|(L);

thus, up to taking a not relabelled further subsequence, we have that un − cn
∗
⇀ u∞ ∈ BV (L) for some

u∞ ∈ BV (L). Using (5.21) once more, we must have Du∞ = RM∞ . At this point, we can distinguish
two cases, M∞ = 0 or M∞ 6= 0.

If M∞ = 0 , then
1
n

= 1
n
|Dun|(L) > |Dun −RMn

|(L)→ 1,

which cannot be.
If M∞ 6= 0, then, using the antisymmetry of DRM∞ = M∞, we again arrive at a contradiction, since

curlDu∞ = 0 but | curlRM∞ | =
√

2|M∞| > 0.

To see that the last equality holds, just notice that in the two dimensional case under consideration we
must have

M∞ =
(

0 a
−a 0

)
for some a 6= 0, which implies curlRM∞ = −2a.

Thus, we have proved that there is a constant CL, possibly depending on L, such that

CL|Du|(L) 6 |Du−RM |(L) for all M ∈ R2×2
skew.
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To see that CL is independent of the size of L, we just notice that this inequality holds for all M and
that upon rescaling x 7→ rx it is enough to replace M by M/r to maintain the inequality. �

The next proposition guarantees that if a dyadic square L ⊂ Q is small enough, then a solution uα0,α1

of Level 3 of our TGV learning scheme in (1.20) is affine for every (α0, α1) ∈
[
c0,

1
c0

]
×
[
c1,

1
c1

]
. Let us

remark that a related result is contained in [57, Proposition 6], which we make quantitative and with a
scaling that enables us to draw conclusions on the cell size.

Proposition 5.11. Fix c0, c1 > 0 and L ⊂ Q a dyadic square. Let ᾱL be the optimal parameter given
by (5.3), where uα,L is defined by (1.22) and (1.19) (with Q replaced by L), and let CBVQ , CBDQ , and CrotQ

be the constants in (5.18), (5.19), and (5.20), respectively. If

‖uη‖L2(L) < min
(
c0,

c1
CBDQ |L|1/2

)
CrotQ

CBVQ
, (5.22)

then ᾱL := (α0, α1) = (c0, c1) and uᾱL := u(α0,α1),L is affine on L, with uᾱL = 〈uη〉L.

Proof. To simplify the notation in the proof, we omit the dependence of TGVα0,α1 and uα0,α1 on L by
writing TGVα0,α1(·) in place of TGVα0,α1(·, L) and u(α0,α1),L, respectively.

Fix (α0, α1) ∈
[
c0,

1
c0

]
×
[
c1,

1
c1

]
. The optimality condition for (1.22) reads as

uη − uα0,α1 ∈ ∂TGVα0,α1(uα0,α1).

Since TGVα0,α1 is positively one-homogeneous, we have that

z ∈ ∂TGVα0,α1(uα0,α1) if and only if z ∈ ∂TGVα0,α1(0) and
∫
L

z uα0,α1 dx = TGVα0,α1(uα0,α1).

Furthermore, by the definition of subgradient,

z ∈ ∂TGVα0,α1(0) if and only if
∫
L

z u dx 6 TGVα0,α1(u) for all u ∈ L2(L).

Now, given v ∈ R2 and c ∈ R, we denote by Av,c the affine function given by Av,c(x) = v · x + c.
Because

TGVα0,α1(Av,c) = 0, (5.23)

we deduce from the above with z = uη − uα0,α1 and u = ±Av,c that
∫
L

(uη − uα0,α1)Av,c dx = 0 for any
v ∈ R2 and c ∈ R; moreover,

TGVα0,α1(uα0,α1) =
∫
L

(uη − uα0,α1)uα0,α1 dx =
∫
L

(uη − uα0,α1)(uα0,α1 −Av,c) dx

6 ‖uη − uα0,α1‖L2(L)‖uα0,α1 −Av,c‖L2(L).

Thus, taking the infimum over v ∈ R2 and c ∈ R and recalling (5.4), we conclude that

TGVα0,α1(uα0,α1) 6 ‖uη − uα0,α1‖L2(L)‖uα0,α1 − 〈uα0,α1〉L‖L2(L). (5.24)

On the other hand, since the infimum in the definition of TGVα0,α1 is attained, there is a wu ∈ BD(L)
for which

TGVα0,α1(uα0,α1) = inf
w∈BD(L)

{
α0|Duα0,α1 − w|(L) + α1|Ew|(L)

}
= α0|Duα0,α1 − wu|(L) + α1|Ewu|(L)

> α0|Duα0,α1 − wu|(L) + α1

CBDQ
‖wu −RMwu

− vwu‖L2(L),
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where we have used the inequality (5.19) for some skew-symmetric matrix Mwu ∈ R2×2 and vector
vwu ∈ R2. Setting Ru := RMwu

and vu := vwu , we get that

TGVα0,α1(uα0,α1) > α0|Duα0,α1 − wu|(L) + α1

CBDQ
‖wu −Ru − vu‖L2(L)

> α0|Duα0,α1 − wu|(L) + α1

CBDQ |L|1/2
‖wu −Ru − vu‖L1(L)

> min
(
c0,

c1
CBDQ |L|1/2

)[
|Duα0,α1 − wu|(L) + ‖wu −Ru − vu‖L1(L)

]
> min

(
c0,

c1
CBDQ |L|1/2

)
|Duα0,α1 −Ru − vu|(L)

= min
(
c0,

c1
CBDQ |L|1/2

)
|D(uα0,α1 −Avu,0)−Ru|(L).

Now, we can apply Lemma 5.10 to uα0,α1 − Avu,0 and the Sobolev inequality (5.18) to obtain for some
cu ∈ R that

TGVα0,α1(uα0,α1) > min
(
c0,

c1
CBDQ |L|1/2

)
CrotQ |D(uα0,α1 −Avu,0)|(L)

> min
(
c0,

c1
CBDQ |L|1/2

)
CrotQ

CBVQ
‖uα0,α1 −Avu,cu‖L2(L)

> min
(
c0,

c1
CBDQ |L|1/2

)
CrotQ

CBVQ
‖uα0,α1 − 〈uα0,α1〉L‖L2(L),

(5.25)

where we used (5.4) once more. Then, if uα0,α1 was not affine, then ‖uα0,α1 − 〈uα0,α1〉L‖L2(L) > 0, so we
could combine (5.25) with the upper bound (5.24) and minimality of uα0,α1 in (1.22) to obtain

min
(
c0,

c1
CBDQ |L|1/2

)
CrotQ

CBVQ
6 ‖uη − uα0,α1‖L2(L) 6 ‖uη‖L2(L),

which contradicts (5.22). Thus, uα0,α1 must be affine.
Finally, using (5.23), (5.4), and 〈uη〉L as a competitor in (1.22), we conclude that uα0,α1 = 〈uα0,α1〉L =

〈uη〉L. Hence, ᾱL = (c0, c1), and this concludes the proof. �

Owing to Proposition 5.11, we are now in a position to reduce the minimum problem in Level 1 of our
training scheme to a minimization over a finite set of admissible partitions.

Theorem 5.12. Consider the learning scheme (LS)TGVω in (1.20) with (1.21) restricted by (1.29) (see
(5.3)). Then, there exist κ ∈ N and L1, ...,Lκ ∈ P such that

argmin
{∫

Q

|uc − uL|2 dx : L∈ P

}
= argmin

{∫
Q

|uc − uLi |2 dx : i ∈ {1, ..., κ}
}
.

Proof. The proof is analogous to that of Theorem 3.6, so we only provide a sketch of the argument. The
only difference here is that instead of being a constant, the solution uα,L of Level 1 is affine for any
α := (α0, α1) ∈

[
c0,

1
c0

]
×
[
c1,

1
c1

]
on squares L on which (5.22) holds, due to Proposition 5.11. Moreover,

TGVα0,α1(uα,L, L) = 0 and, recalling (5.3), the optimal parameter given by (5.3) is ᾱL = (c0, c1). As in
the proof of Theorem 3.6, this observation allows us to replace any partition L∗ containing such small
dyadic squares with another partition L

∗ whose dyadic squares have all side length above the threshold
provided by (5.22) without affecting the minimizer of Level 2. We refer to Figure 1 for a graphical idea
of the argument and to Theorem 3.6 for the details of the proof. �

We conclude this section by proving existence of an optimal solution to the learning scheme (LS)TGVω .

Proof of Theorem 1.7. The result follows directly by combining the analysis in Subsection 5.1, Proposi-
tion 5.9, and Theorem 5.12. �
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5.4. Stopping criteria and box constraint for TGV. In this subsection, we prove a TGV -counterpart
to Theorem 3.8. Our result reads as follows.

Theorem 5.13. Let Ω ⊂ R2 be a bounded, Lipschitz domain and, for each α ∈ (0,+∞)2, let uα ∈
BV (Ω) be given by (1.22) with L replaced by Ω. Assume that the two following conditions on the training
data hold:

i) There exists α̂ ∈ (0,+∞)2 such that TGVα̂0,α̂1(uc,Ω) < TGVα̂0,α̂1(uη,Ω);
ii) ‖uη − uc‖2L2(Ω) < ‖〈uη〉 − uc‖

2
L2(Ω).

Then, there exists
α∗Ω ∈ (0,+∞)2 ∪

(
{+∞}× (0,+∞)

)
∪
(
(0,+∞)× {+∞}

)
(5.26)

such that
Ĵ(α∗Ω) = min

α∈[0,+∞]2
Ĵ(α), (5.27)

where Ĵ is a (lower semicontinuous) extension on [0,+∞]2 (see (5.36) in Lemma 5.18 below) of the
function J : (0,+∞)2 → [0,+∞) defined by

J(α) :=
∫

Ω
|uc − uα|2 dx for α ∈ (0,+∞)2. (5.28)

Additionally, there exist positive constants, cΩ and CΩ, such that any minimizer, α∗Ω, of Ĵ over [0,+∞]2
satisfies cΩ 6 min{(α∗Ω)0, (α∗Ω)1} < CΩ‖uη‖L2(Ω).

In particular, if Ω = L with L ⊂ Q is a dyadic square, then there exists a positive constant, cL, such
that any minimizer, α∗L, of Ĵ over [0,+∞]2 satisfies cL 6 min{(α∗L)0, (α∗L)1} < CQ‖uη‖L2(L), where CQ
is a constant given by Proposition 5.11.

Owing to the orthogonality property (5.5), condition ii) in the statement of the theorem is equivalent
to requiring that ‖uc−〈uc〉−uη + 〈uη〉‖2L2(Ω) 6 ‖uc−〈uc〉‖

2
L2(Ω). In other words, ii) is satisfied provided

that the perturbation which the noise causes on the non-affine portion of uc is small in the L2-sense
compared to the original non-affine component of uc. This is the case, for example, if η = uη − uc and
η − 〈η〉 has a small L2-norm, regardless of the L2-norm of 〈η〉.

We remark that the conclusion of the theorem in the general case is slightly weaker than the corre-
sponding result for the TV -setting. Indeed, while we can show that both entries of optimal parameters
must be uniformly bounded away from zero, we can only prove that their minimum is uniformly bounded
from above but cannot prevent that just one of the entries blows up to infinity. This is due to the fact
that, without additional conditions, the maps uα are not necessarily affine if just one of the entries of α
becomes infinity, cf. also [57, Proposition 6] for comparison.

However, as a direct consequence of our result, we find a complete characterization for the case in
which the analysis of TGV reduces to a one-dimensional problem.

Corollary 5.14. Under the same assumption and with the same notation of Theorem 5.13, setting
uλ := uλ(α̂0,α̂1) for every λ ∈ [0,+∞], there exists λ∗Ω ∈ (0,+∞) such that

J(λ∗Ω(α̂0, α̂1)) = min
λ∈(0,+∞)

J(λ(α̂0, α̂1)).

Additionally, there exist positive constants, cΩ and CΩ, such that any minimizer λ∗Ω satisfies cΩ 6
λ∗Ω < CΩ‖uη‖L2(Ω).

In particular, if Ω = L with L ⊂ Q is a dyadic square, then there exists a positive constant, cL, such that
any minimizer λ∗L satisfies cL 6 λ∗L < CQ‖uη‖L2(L), where CQ is a constant given by Proposition 5.11.

As in the case of the total variation, we proceed by first studying the limiting behavior of the sum
of fidelity and TGV -seminorm in the sense of Γ-convergence. To describe the situation in which the
tuning coefficients approach +∞, it is useful to recall thatMb(Ω;Rd) denotes the set of bounded Radon
measures on Ω with values in Rd and Ker E (Ω;Rd) is the set of all maps Φ : Ω→ Rd such that EΦ = 0. In
particular, Φ ∈ Ker E (Ω;Rd) if and only if there existsM ∈ Rd×dskew and m ∈ Rd such that Φ(x) = Mx+m
for every x ∈ Ω.

We also recall the function
mE :Mb(Ω;Rd)→ Ker E (Ω;Rd),
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introduced in [57, Proposition 3], and defined as the solution to the minimum problem

|µ−mE(µ)|(Ω) = min{|µ− φ|(Ω) : φ ∈ Ker E (Ω;Rd)}, (5.29)

for every µ ∈ Mb(Ω;Rd). Recall that BH(Ω) denotes the space of functions with bounded Hessian on
Ω, namely maps u ∈ BV (Ω) such that D2u ∈Mb(Ω;Rd×d).

Lemma 5.15. Let Ω ⊂ R2 be a bounded, Lipschitz domain and, for each α ∈ (0,+∞)2, let uα ∈
BV (Ω) be given by (1.22) and (1.19), with L and Q replaced by Ω. Consider the family of functionals
(Gᾱ)ᾱ∈[0,+∞]2 , where Gᾱ : L1(Ω)→ [0,+∞] is defined by

Gα[u] :=
{∫

Ω |uη − u|
2 dx+ TGVα0,α1(u,Ω) if u ∈ BV (Ω),

+∞ otherwise,
for ᾱ =: α = (α0, α1) ∈ (0,+∞)2,

G0,ᾱ1 [u] :=
{∫

Ω |uη − u|
2 dx if u ∈ L2(Ω),

+∞ otherwise,
for ᾱ0 = 0 and ᾱ1 ∈ [0,+∞],

G∞,α1 [u] :=
{∫

Ω |uη − u|
2 dx+ α1|D2u|(Ω) if u ∈ BH(Ω),

+∞ otherwise,
for ᾱ0 = +∞,

ᾱ1 =: α1 ∈ (0,+∞),

Gᾱ0,0[u] :=
{∫

Ω |uη − u|
2 dx if u ∈ BV (Ω),

+∞ otherwise,
for ᾱ0 ∈ (0,+∞] and ᾱ1 = 0,

Gα0,∞[u] :=
{∫

Ω |uη − u|
2 dx+ α0|Du−mE(Du)|(Ω) if u ∈ BV (Ω),

+∞ otherwise,
for ᾱ0 =: α0 ∈ (0,∞),

ᾱ1 = +∞,

G∞,∞[u] :=
{∫

Ω |uη − u|
2 dx if Du ∈ Ker E(Ω;Rd),

+∞ otherwise,
for ᾱ0 = ᾱ1 = +∞.

Let (αj)j∈N ⊂ (0,+∞)2 and ᾱ ∈ [0,∞]2 be such that αj → ᾱ in [0,+∞]2. Then, (Gαj )j∈N Γ-converges
to Gᾱ in L1(Ω).

Proof. We first prove that if (uj)j∈N ⊂ L1(Ω) and u ∈ L1(Ω) are such that uj → u in L1(Ω), then

Gᾱ[u] 6 lim inf
j→∞

Gαj [uj ]. (5.30)

Without loss of generality, we work under the assumptions that

lim inf
j→∞

Gαj [uj ] = lim
j→∞

Gαj [uj ] < +∞ and sup
j∈N

Gαj [uj ] < +∞.

Then, uj ∈ BV (Ω) for all j ∈ N, supj∈N
∫

Ω |uη − uj |
2 dx < +∞ and supj∈N TGV(αj)0,(αj)1(uj ,Ω) < +∞.

Hence, u ∈ L2(Ω) and uj ⇀ u weakly in L2(Ω). For each j ∈ N, let u∗j ∈ BD(Ω) be such that

TGV(αj)0,(αj)1(uj) = (αj)0|Duj − u∗j |(Ω) + (αj)1|Eu∗j |(Ω). (5.31)

We now consider each limiting behavior of the sequence (αj)j∈N separately.
(i) If ᾱ = α ∈ (0,+∞)2, then an argument by contradiction as the classical TGV case and variants

thereof (see, e.g., [29, Proposition 5.3]) yields uniform bounds for sequences (uj)j∈N and (u∗j )j∈N
in BV (Ω) and BD(Ω), respectively. Thus, u ∈ BV (Ω) and uj ⇀ u weakly-? in BV (Ω). Addi-
tionally, there exists u∗ ∈ BD(Ω) such that, up to extracting a further subsequence, u∗j ⇀ u∗

weakly-? in BD(Ω), from which (5.30) follows.
(ii) If ᾱ0 = 0, then (5.30) holds by the lower-semicontinuity of the L2-norm with respect to the weak

convergence in L2(Ω).
(iii) If ᾱ0 = +∞ and ᾱ1 ∈ (0,+∞), then (u∗j )j∈N is bounded in BD(Ω). Thus, there exists

u∗ ∈ BD(Ω) such that, up to extracting a further subsequence, u∗j ⇀ u∗ weakly-? in BD(Ω).
Additionally, limj→∞ |Duj − u∗j |(Ω) = 0. Thus, uj → u strongly in BV (Ω), u ∈ BH(Ω), and
(5.30) holds by the lower-semicontinuity of the L2-norm with respect to the strong convergence
in BV (Ω).

(iv) If ᾱ0 ∈ (0,∞] and ᾱ1 = 0, then the situation is analogous to (ii).
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(v) If ᾱ1 = +∞ and ᾱ0 ∈ (0,+∞), then there exists u∗ affine and such that u∗j → u∗ strongly in
BD(Ω) and (uj)j∈N is uniformly bounded in BV (Ω), so that uj

∗
⇀ u weakly-? in BV (Ω). The

statement follows from the lower semicontinuity of the total variation with respect to the weak-?
convergence of measures, as well as from (5.29).

(vi) If ᾱ0 = ᾱ1 = +∞, then there exists u∗ ∈ Ker E(Ω;Rd) such that u∗j → u∗ strongly in BD(Ω) and
Duj → u∗ strongly inMb(Ω;Rd). Thus, Du = u∗ and the statement follows.

Next, we show that for any u ∈ L1(Ω), there exists (uj)j∈N ⊂ L1(Ω) such that uj → u in L1(Ω) and
Gᾱ[u] > lim sup

j→∞
Gαj [uj ]. (5.32)

Again, we detail the argument in each case separately.
(i) If ᾱ = α ∈ (0,+∞)2 then we can assume, without loss of generality, that u ∈ BV (Ω). The

conclusion follows then by a classical argument relying on the continuity of TGV with respect to
its tuning parameters (see, e.g., [29, Theorem 4.2]).

(ii) If ᾱ0 = 0, then we consider for every u ∈ L2(Ω) an approximating sequence (uk)k∈N ⊂ C∞c (Ω)
such that uk → u strongly in L2(Ω). Choosing the null function as a competitor in the definition
of TGV , we find that

TGV(αj)0,(αj)1(uk) 6 (αj)0|Duk|(Ω).

Thus,
lim

j→+∞
Gαj [uk] = G0,ᾱ1 [uk]

for every ᾱ1 ∈ [0,+∞] and every k ∈ N. The thesis follows then by a classical diagonalization
argument.

(iii) If ᾱ0 = +∞ and ᾱ1 = α1 ∈ (0,+∞) then we can assume, without loss of generality, that
u ∈ BH(Ω). In particular, ∇u ∈ BD(Ω) which we can then use as a competitor in the definition
of TGV to infer that

TGV(αj)0,(αj)1(u) 6 (αj)1|D2u|(Ω).
Thus,

lim sup
j→+∞

Gαj [u] 6 lim sup
j→+∞

(∫
Ω
|uη − u|2 dx+ (αj)1|D2u|(Ω)

)
= G∞,α1 [u].

(iv) If ᾱ0 ∈ (0,+∞] and ᾱ1 = 0, arguing by approximation as in case (ii), we can assume without
loss of generality that u ∈ C∞c (Ω). Then, choosing ∇u as a competitor in the definition of TGV ,
we find that

TGV(αj)0,(αj)1(u) 6 (αj)1|∇2u|(Ω).
Hence, arguing as in case (ii) once more, yields (5.32).

(v) If ᾱ0 = α0 ∈ (0,+∞) and ᾱ1 = +∞, then we can assume that u ∈ BV (Ω). Choosing mE(Du) in
the definition of TGV , yields

TGV(αj)0,(αj)1(u) 6 (αj)0|Du−mE(Du)|(Ω).

Hence, arguing as in case (ii), we infer (5.32).
(vi) If ᾱ0 = ᾱ1 = +∞, then, without loss of generality, we can assume that Du ∈ Ker E(Ω;Rd).

Choosing Du as a competitor in the definition of TGV shows that TGV(αj)0,(αj)1(u) = 0 for
every j ∈ N, from which (5.32) follows.

The Γ-convergence of (Gαj )j∈N to Gᾱ in L1(Ω) is then a direct consequence of (5.30) and (5.32). �

As a consequence of the previous result, we provide a characterization of the unique minimizer uᾱ of
Gᾱ.

Corollary 5.16. Under the same assumptions of Lemma 5.15, let uᾱ := argminu∈L1(Ω)Gᾱ[u] for ᾱ ∈
[0,+∞]2. Then,

uᾱ =


uα if ᾱ = α ∈ (0,+∞)2

uη if ᾱ0 = 0 or ᾱ1 = 0,
〈uη〉Ω if ᾱ0 = ᾱ1 = +∞.

(5.33)
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Additionally, when just one among ᾱ0 and ᾱ1 is infinite, then 〈uᾱ〉Ω = 〈uη〉Ω. In these regimes, if
additionally uη = 〈uη〉Ω, then uᾱ = 〈uᾱ〉Ω.

Proof. The first claim follows directly from Lemma 5.15. We show the second statement only in the case
in which ᾱ0 = ∞ and ᾱ1 is finite, being the case in which ᾱ1 = ∞ analogous. The characterization of
minimizers is then a consequence of the orthogonality property in (5.5) which, in turn, yields

G∞,ᾱ1(u) =
∫

Ω
|〈u− uη〉Ω|2 dx+

∫
Ω

[(u− 〈u〉Ω)− (uη − 〈uη〉Ω)]2 dx+ ᾱ1|D2 (u− 〈u〉Ω) |

for every u ∈ BH(Ω). �

Lemma 5.17. Let Ω ⊂ R2 be a bounded, Lipschitz domain and let (Gᾱ)ᾱ∈[0,+∞] be the family of
functionals introduced in Lemma 5.15. Given ᾱ ∈ [0,∞]2, set uᾱ := argminu∈L1(Ω)Gᾱ[u]. Then, there
exists a sequence of pairs of positive numbers, (αj)j∈N ⊂ (0,+∞)2, such that αj → ᾱ in [0,+∞]2 as
j →∞ and

lim
j→∞

∫
Ω
|uαj − uᾱ|2 dx = 0, (5.34)

where uαj := argminu∈L1(Ω)Gαj [u] for all j ∈ N.

Proof. With the same notation as in the proof of Lemma 5.15, we detail the argument for each case
separately.

(i) If ᾱ = α ∈ (0,+∞)2, then the statement follows directly by choosing αj = α for every j.
(ii) If ᾱ0 = 0, then uᾱ = uη and Gᾱ[uᾱ] = Gᾱ[uη] = 0. In view of Lemma 5.15, there exists a

sequence (ujη)j∈N ⊂ L1(Ω) such that

lim sup
j→+∞

Gαj [ujη] 6 Gᾱ[uη].

Hence, for any sequence (αj)j∈N ⊂ (0,+∞)2 satisfying αj → ᾱ, the minimality of uαj yields

lim sup
j→∞

(∫
Ω
|uαj − uη|2 dx+ TGV(αj)0,(αj)1(uαj ,Ω)

)
= lim sup

j→∞
Gαj [uαj ]

6 lim sup
j→∞

Gαj [ujη] 6 Gᾱ[uη] = 0.

Thus, we infer (5.34).
(iii) If ᾱ0 = +∞ and ᾱ1 = α1 ∈ (0,+∞), then uᾱ ∈ BH(Ω). For every sequence (αj0)j∈N such that

αj0 → +∞ as j → +∞, setting αj := (αj0, α1), from the minimality of uαj and choosing ∇uᾱ as
a competitor in the definition of TGV , we find

Gαj [uαj ] 6 Gαj [uᾱ] 6
∫

Ω
|uᾱ − uη|2 dx+ α1|D2uᾱ|(Ω) = Gᾱ[uᾱ].

By the fundamental theorem of Γ-convergence (see [27, Corollary 7.20 and Theorem 7.8]), the
equi-coerciveness of the functionals Gαj together with the uniqueness of minimizers yields that
uαj ⇀ uᾱ weakly in L2(Ω). Property (5.34) follows then by arguing as in item (iii) in the first
part of the proof of Lemma 5.15 and using the continuous embedding BV (Ω) ⊂ L2(Ω).

(iv) If ᾱ0 ∈ (0,+∞] and ᾱ1 = 0, then uᾱ = uη. Let (ukη)k∈N ⊂ C∞c (Ω) be such that ukη → uη
strongly in L2(Ω). For every sequence (αj)j∈N ⊂ (0,+∞)2 satisfying αj → ᾱ, we obtain from
the minimality of uαj that

Gαj [uαj ] 6 Gαj [ukη] 6
∫

Ω
|ukη − uη|2 dx+ (α1)j

∫
Ω
|∇2ukη| dx,

where the latter inequality follows by choosing ∇ukη as a competitor in the definition of TGV .
Thus,

lim sup
j→+∞

Gαj [uαj ] 6
∫

Ω
|uη − ukη|2 dx

for every k ∈ N. Passing to the limit as k → +∞, we infer that
lim sup
j→+∞

Gαj [uαj ] = 0.
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In turn, this implies (5.34).
(v) If ᾱ0 = α0 ∈ (0,+∞) and ᾱ1 = +∞, then uᾱ ∈ BV (Ω). For (αj1)j∈N ⊂ (0,+∞) such that

αj1 → +∞, and setting αj := (α0, α
j
1), we deduce that

Gαj [uαj ] 6 Gαj [uᾱ] 6
∫

Ω
|uᾱ − uη|2 dx+ α0|Duᾱ −mE(Duᾱ)|(Ω) = Gᾱ[uᾱ].

By the fundamental theorem of Γ-convergence, we infer that uαj → uᾱ strongly in L1(Ω) and
that Gαj [uαj ]→ Gᾱ[uᾱ]. On the other hand, letting u∗αj be defined as in (5.31) with uj replaced
by uαj , the same argument as in item (v) in the first part of the proof of Lemma 5.15 yields
uαj

∗
⇀ u weakly-? in BV (Ω), and u∗αj → u∗ strongly in BD(Ω) with u∗ affine. By combining the

above convergences, we deduce

Gᾱ[uᾱ] 6
∫

Ω
|uᾱ − uη|2 dx+ α0|Duᾱ − u∗|(Ω)

6 lim inf
j→+∞

∫
Ω
|uαj − uη|2 dx+ α0|Duαj − u∗αj |(Ω) 6 lim

j→+∞
Gαj [uαj ] = Gᾱ[uᾱ],

where the first inequality follows by the definition of mE , cf. (5.29), whereas the second one is a
consequence of the lower semicontinuity of the L2-norm with respect to the weak L2-convergence,
as well as of the lower semicontinuity of the total variation with respect to the weak-? convergence
of measures.

(vi) If ᾱ0 = ᾱ1 = +∞, then uᾱ is affine. Thus, for every sequence (αj)j∈N ⊂ (0,+∞)2 satisfying
αj → ᾱ,

Gαj [uαj ] 6 Gαj [uᾱ] =
∫

Ω
|uᾱ − uη|2 dx = Gᾱ[uᾱ].

Property (5.34) is once again obtained arguing by the fundamental theorem of Γ-convergence, as
in (iii).

�

In view of the lemmas above, we obtain the following characterization of the lower semicontinuous
envelope of J .

Lemma 5.18. Let Ω ⊂ R2 be a bounded, Lipschitz domain, and let J : (0,+∞)2 → [0,+∞) be the
function defined in (5.28). Then, the extension Ĵ : [0,+∞]2 → [0,+∞] of J to the closed interval
[0,+∞]2 defined for ᾱ ∈ [0,+∞]2 by

Ĵ(ᾱ) := inf
{

lim inf
j→∞

J(αj) : (αj)j∈N ⊂ (0,+∞)2, αj → ᾱ in [0,+∞]2
}
, (5.35)

satisfies

Ĵ(ᾱ) =


J(α) = ‖uα − uc‖2L2(Ω) if ᾱ = α ∈ (0,+∞)2,

‖uη − uc‖2L2(Ω) if ᾱ0 = 0 or ᾱ1 = 0,
‖〈uη〉 − uc‖2L2(Ω) if ᾱ0 = ᾱ1 = +∞,
‖uᾱ − uc‖2L2(Ω) with 〈uᾱ〉 = 〈uη〉 otherwise,

(5.36)

where uᾱ is the unique minimizer of Gᾱ, cf. Corollary 5.16.

Proof. We first note that the function Ĵ in (5.35) is lower-semicontinuous on [0,+∞]2 and Ĵ 6 J in
(0,+∞)2. Next, we denote by J̃ the function on [0,+∞]2 defined by the right-hand side of (5.36), and
observe that

J̃(ᾱ) = ‖uᾱ − uc‖2L2(Ω),

where uᾱ := argminu∈L1(Ω)Gᾱ(u) is given by (5.33). We want to show that Ĵ ≡ J̃ . By Lemma 5.17, for
all ᾱ ∈ [0,+∞]2 there exists a sequence (αj)j∈N ⊂ (0,+∞) such that αj → ᾱ and for which we have

J̃(ᾱ) = ‖uᾱ − uc‖2L2(Ω) = lim
j→∞

‖uαj − uc‖2L2(Ω) = lim
j→∞

J(αj). (5.37)

Thus, J̃(ᾱ) > Ĵ(ᾱ) for all ᾱ ∈ [0,+∞]2. It remains to prove the opposite inequality. For this, we
distinguish several cases as in the proofs of Lemma 5.17:
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(i) If ᾱ = α ∈ (0,+∞)2, let (αj)j∈N ⊂ (0,+∞) be any sequence such that αj → α. As argued before,
we observe that the uniform bounds in BV (Ω) proved in Lemma 5.15 assert that (Gαj )j∈N is an
equi-coercive sequence in L1(Ω). Thus, as before, by well-known properties of Γ-convergence on
the convergence of minimizing sequences and energies (see [27, Corollary 7.20 and Theorem 7.8]),
together with the uniqueness of minimizers of Gαj and Gα, we have that uαj ⇀ uα weakly-? in
BV (Ω) and limj→∞Gαj [uαj ] = Gα[uα]. In particular, uαj ⇀ uα weakly in L2(Ω). Hence,

J̃(α) = ‖uα − uc‖2L2(Ω) 6 lim inf
j→∞

‖uαj − uc‖2L2(Ω) = lim inf
j→∞

J(αj).

Taking the infimum of all such sequences (αj)j∈N ⊂ (0,+∞), we conclude that J̃(α) 6 Ĵ(α).
(ii) If ᾱ0 = 0, we obtain by the corresponding case of Lemma 5.17 that for any sequence (αj)j∈N ⊂

(0,+∞)2 such that αj → ᾱ, we have
0 6 lim sup

j→+∞
Gαj [uαj ] = 0, (5.38)

which implies uαj → uη strongly in L2(Ω), and in turn limj→∞ J(αj) = J̃(ᾱ). Thus, taking the
infimum over all such sequences, we conclude that Ĵ(ᾱ) = J̃(ᾱ).

(iii) If ᾱ0 = +∞ and ᾱ1 = α1 ∈ (0,+∞), the thesis follows by observing that the same argument as
in (iii) of Lemma 5.17 still holds for any sequence (αj0, α

j
1)j∈N with αj0 → +∞ and αj1 → α1 as

j → +∞.
(iv) If ᾱ0 ∈ (0,+∞] and ᾱ1 = 0, we can proceed exactly as in (ii) to conclude that for any sequence

(αj)j∈N ⊂ (0,+∞)2 such that αj → ᾱ, we again have (5.38) by the corresponding case of
Lemma 5.17.

(v) Analogously to (iii), if ᾱ0 = α0 ∈ (0,+∞) and ᾱ1 = +∞, the statement is a consequence of the
fact that the same argument as in (v) of Lemma 5.17 still holds for any sequence (αj0, α

j
1)j∈N with

αj0 → α0 and αj1 → +∞ as j → +∞.
(vi) If ᾱ0 = ᾱ1 = +∞, by the proof item (vi) of Lemma 5.17, we have for any sequence (αj)j∈N ⊂

(0,+∞)2 with αj → ᾱ that Gαj [uαj ] 6 Gᾱ[uᾱ], which, analogously to item (iii) of Lemma 5.17,
provides that uαj ⇀ uα weakly in L2(Ω), and this in turn allows us to conclude as in item (i). �

We are now in a position to prove Theorem 5.13.

Proof of Theorem 5.13. The proof is subdivided into three steps.
Step 1. We prove that if condition i) in the statement holds, namely

TGVα̂0,α̂1(uη,Ω)− TGVα̂0,α̂1(uc,Ω) > 0
for some α̂ ∈ (0,+∞)2, then there exists ᾱ ∈ (0,+∞)2 such that

‖uᾱ − uc‖2L2(Ω) < ‖uη − uc‖
2
L2(Ω). (5.39)

From the convexity of the TGV -seminorm, arguing as in the proof of (3.14), we infer that

‖uη − uc‖2L2(Ω) − ‖uα − uc‖
2
L2(Ω) 6 TGVα0,α1(uα,Ω)− TGVα̂0,α̂1(uc,Ω)

for every α ∈ (0,+∞)2. Choosing α = λα̂, and denoting uλ(α̂) by uλ, for simplicity, we find that

‖uη − uc‖2L2(Ω) − ‖uλ − uc‖
2
L2(Ω) 6 λ (TGVα̂0,α̂1(uλ,Ω)− TGVα̂0,α̂1(uc,Ω))

for every λ ∈ (0,+∞). By the proof of case (ii) of Lemma 5.17 and by Corollary 5.16, it follows that,
up to (non-relabelled) subsequences, uλ → uη strongly in L2(Ω) as λ → 0. Fix ε > 0; by the lower-
semicontinuity of the TGV -seminorms with respect to the strong L2-convergence, we conclude that

TGVα̂0,α̂1(uλ,Ω) > TGVα̂0,α̂1(uη,Ω)− ε(TGVα̂0,α̂1(uη,Ω) − TGVα̂0,α̂1(uc,Ω))
for λ small enough. Thus,

‖uη − uc‖2L2(Ω) − ‖uλ − uc‖
2
L2(Ω) > λ(TGVα̂0,α̂1(uη,Ω)− TGVα̂0,α̂1(uc,Ω))(1− ε)

for λ small enough. This implies that there exists λ̄ ∈ (0,+∞) for which

‖uη − uc‖2L2(Ω) > ‖uλ − uc‖
2
L2(Ω).

The preceding estimate yields the thesis by choosing ᾱ = λ̄(α̂0, α̂1).
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Step 2. We prove that if condition ii) in the statement holds, (i.e., ‖uη−uc‖2L2(Ω) < ‖〈uη〉−uc‖
2
L2(Ω)),

then there exits ᾱ ∈ (0,+∞)2 such that
‖uᾱ − uc‖2L2(Ω) < ‖〈uη〉 − uc‖

2
L2(Ω). (5.40)

In view of Step 1,
lim
λ→0
‖uλ − uc‖L2(Ω) = ‖uη − uc‖L2(Ω) < ‖〈uη〉 − uc‖L2(Ω).

By the proof of case (vi) of Lemma 5.17 and by Corollary 5.16, we obtain the existence of λ̄ ∈ (0,+∞)
for which

‖uλ̄ − uc‖L2(Ω) < ‖〈uη〉 − uc‖L2(Ω).

The claim follows by choosing ᾱ = λ̄(α̂0, α̂1).
Step 3. We conclude the proof by establishing the bounds on the parameters stated in Theorem 5.13.

From the lower semicontinuity of Ĵ , we infer that there exists α∗ ∈ [0,+∞]2 where the minimum value
is attained. By Corollary 5.16 and by the previous steps, α∗ satisfies (5.26) and

Ĵ(α∗) = min
ᾱ∈[0,+∞]2

Ĵ(ᾱ). (5.41)

To prove the existence of the lower bound cΩ, we argue by contradiction. We first assume that there
exists a sequence (α∗j )j∈N ⊂ (0,+∞)2 such that α∗j → 0 as j → +∞, and (5.41) holds for α∗ = α∗j for all
j ∈ N. In view of the lower semi-continuity of Ĵ on [0,+∞]2,

min
ᾱ∈[0,+∞]2

Ĵ(ᾱ) 6 Ĵ(0) 6 lim inf
j→∞

Ĵ(α∗j ) = min
ᾱ∈[0,+∞]2

Ĵ(ᾱ),

which is false by (5.39). This proves the existence of a constant ĉΩ such that |α∗| > ĉΩ for every minimizer
α∗ of Ĵ . The existence of the constant cΩ as in the statement of the theorem follows by observing that
the above argument can be repeated by considering sequences (α∗j )j∈N for which just one of the entries
converges to zero.

The bound from above on min{α∗0, α∗1} follows directly by Proposition 5.11. In fact, from (5.22), we
infer the existence of a constant CΩ such that uα∗ is affine if CΩ‖uη‖L2(Ω) < min{α∗0, α∗1}. Now, assume
by contradiction that there exists a sequence (α∗j )j∈N ⊂ (0,+∞)2 such that both entries of α∗j blow
up to infinity as j → +∞, and (5.41) holds for α∗ = α∗j for all j ∈ N. Using, once again, the lower
semi-continuity of Ĵ on [0,+∞]2, we find that

min
ᾱ∈[0,+∞]2

Ĵ(ᾱ) 6 Ĵ(+∞,+∞) 6 lim inf
j→∞

Ĵ(α∗j ) = min
ᾱ∈[0,+∞]2

Ĵ(ᾱ),

which is false by Corollary 5.16 and (5.40). �

5.5. The (LS)TGV−Fidω learning scheme. Given a dyadic square L ⊂ Q and λ ∈ (0,∞), we have

argmin
{
λ

∫
L

|uη − u|2 dx+ TGV1,1(u, L) : u ∈ BV (L)
}

= argmin
{∫

L

|uη − u|2 dx+ TGV 1
λ ,

1
λ

(u, L) : u ∈ BV (L)
}
.

The analysis in Subsections 5.1–5.3 applies also to the weighted-fidelity learning scheme and yields The-
orem 1.8. As before, the previous existence theorem holds true under any stopping criterion for the
refinement of the admissible partitions provided that the training data satisfies suitable conditions. We
summarize the situation in the next result, which follows directly by the discussions in the previous
subsection, in particular Corollary 5.14.

Theorem 5.19 (Equivalence between box constraint and stopping criterion). Consider the
learning scheme (LS)TGV−Fidω in (1.27). The two following conditions hold:

(a) If we replace (1.21) by (5.3), then there exists a stopping criterion (S) for the refinement of the
admissible partitions as in Definition 1.2.

(b) Assume that there exists a stopping criterion (S) for the refinement of the admissible partitions
as in Definition 1.2 such that the training data satisfies for all L ∈ ∪L∈P̄L, with P̄ as in
Definition 1.2, the conditions

(i) TGVα0,α1(uc, L) < TGVα0,α1(uη, L),
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(ii) ‖uη − uc‖2L2(L) < ‖〈uη〉L − uc‖
2
L2(L).

Then, there exist c0, c1 ∈ R+ such that the optimal solution u∗ provided by (LS)TGV−Fidω with
P replaced by P̄ coincides with the optimal solution u∗ provided by (LS)TGV−Fidω with (1.21)
replaced by (5.3).

6. Numerical Treatment and Comparison of the learning schemes (LS)TVω , (LS)TVωε ,
(LS)TV−Fidω , and (LS)TGV−Fidω

6.1. Common numerical framework for all schemes. The focus of our article is on the use of
space-dependent weights and, from the numerical point of view, our schemes require addressing weights
that are piecewise constant on dyadic partitions. This stands in contrast to most previous approaches
for optimizing space-dependent parameters, which in most cases hinge on H1-type penalizations of the
weights, as done in [25, 45] for TV, [43] for TGV and [55] for some more general convex regularizers. The
piecewise constant setting makes it possible to work in a modular fashion, building upon any numerical
methods that are able to compute solutions to denoising with a weight (Level 2) and finding constant
optimal regularization parameters (Level 3).

In our numerical examples, we have used a basic first-order finite difference discretization of the gradient
and symmetrized gradient, on the regular grid arising from the discrete input images. For solving TV
regularized denoising, either with constant or varying weights, we have opted for the standard primal-
dual hybrid gradient (PDHG) descent scheme of [19]. The optimization for optimal constant parameters
α of Level 3 is done with the ‘piggyback’ version of the same algorithm, which has been proposed in
[20] to learn finite difference discretizations of TV with a high degree of isotropy, and further analyzed
under smoothness assumptions on the energies in [6]. Essentially, it consists in evolving an adjoint state
along with the main variables, to keep track of the sensitivity of the solution with respect to parameters.
We remark that such sensitivity analysis in principle requires not just first but second derivatives of
the lower-level cost functions involved, in our case TV or TGV denoising involving weighted `1 norms
and their Fenchel conjugates, which are only componentwise piecewise smooth. In any case, as already
observed in [20, Appendix A], we do achieve an adequate performance in practice. It is worth mentioning
that other methods to handle the bilevel optimization problems of Level 3 in a nonsmooth setting have
been introduced in [32, 36, 8]. One could also use these in our subdivision scheme within Algorithm 2
below, and in fact the authors of the cited papers optimize for adaptive weights on regular dyadic grids
refined uniformly. In contrast, our focus here is on the adaptive subdivision scheme.

These PDHG methods are based on considering the discrete optimization problems

min
x∈X

G(x) + F(Ky)

through their corresponding saddle point formulation

max
y∈Y

min
x∈X
〈y,Kx〉`2 + G(x)−F∗(y),

with G representing the differentiable fidelity term and F∗ being the projection onto a convex set, arising
as the Fenchel conjugate of an `1-type norm. Denoting by W = Rnm the space of discrete scalar-valued
functions, these read in the TV case as

X = W, Y = W 2, K = ∇, G(u) = λ
∑
ij

(
uij − uijη

)2
, and

F∗(p) = IQTV with QTV =
{
p ∈ Y | (pij1 )2 + (pij2 )2 6 α for all i, j

}
.

For the TGV case, following the approach used in [7] and [9], we have used

X = W ×W 2, Y = W 2 ×W 3, K =
(
∇u −Id
0 E

)
,

G(u, v) = λ
∑
ij

(
uij − uijη

)2
, and F∗(p) = IQTGV , where

QTGV =
{

(p, q) ∈ Y | (pij1 )2 + (pij2 )2 6 α0, (qij11)2 + 2(qij12)2 + (qij22)2 6 α1 for all i, j
}
.
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With this notation and denoting the subgradient by ∂, the PDHG algorithm [19, Algorithm 1] can be
written as 

yk+1 = (Id + σ∂F∗)−1(yk + σKx̄k),
xk+1 = (Id + τ∂G)−1(xk − τK∗yk+1),
x̄k+1 = xk+1 + θ(xk+1 − xk),

(6.1)

where the descent parameters satisfy στ‖K‖ 6 1. In the TV case, this operator norm of ∇ can be
bounded by

√
8 (cf. [17, Theorem 3.1]), while in the TGV case, we have ‖K‖2 6 (17 +

√
33)/2 (cf. [7,

Section 3.2]). The piggyback algorithm of [20, 6] introduces one adjoint variable for each primal and dual
variable above (denoted by X ∈ X , Y ∈ Y, U ∈ W , P ∈ W 2, Q ∈ W 3) and performs the same kind of
updates also on these new variables to optimize the values of a loss function L, resulting in

Y k+1 = D proxσF∗(yk + σKx̄k) ·
[
Y k + σK

(
X̄k +DxL(xk, yk)

)]
,

Xk+1 = D proxτG(xk − τK∗yk+1) ·
[
Xk − τK∗

(
Y k+1 +DyL(xk, yk)

)]
,

X̄k+1 = Xk+1 + θ(Xk+1 −Xk),
(6.2)

where proxτG = (Id + τ∂G)−1 and proxσF∗ = (Id + τ∂F ∗)−1 as appearing in (6.1); the latter corresponds
to a projection onto QTV or QTGV which, as already remarked, is not differentiable on the boundary of
these sets.

In our case, we optimize the squared L2 distance to uc by varying the fidelity parameter λ = 1/α, so
that

L(u) = 1
2
∑
ij

(uij − uijc )2 and DλL(λ) = λ
∑
ij

Û ij(ûij − uijη ) for L(λ) = L(û(λ)), (6.3)

where û, Û are the optimal image variable and corresponding adjoint obtained after convergence of (6.1)
and (6.2). We have then used the derivative DλL to update λ with gradient descent steps. We have
chosen to not use line search, since with the piggyback algorithm evaluations of energy and of gradient
for the solution of the lower level problem require a comparable amount of computational effort, that
is, either performing (6.1) alone or together with (6.2) for the same number of lower level steps. We
summarize this basic approach in Algorithm 1.

Algorithm 1 Numerical approach to Level 3 of (LS)TV−Fidω and (LS)TGV−Fidω
Input: Restrictions of noisy image uη and clean (training) image uc to a dyadic square,

initial parameter λ0, initial timestep ζ, damping factor ν 6 1, tolerance Tol.
1. Set k = 0.
while

(
|λk − λk−1| > Tol or k = 0

)
do

2. Set k = k + 1.
3. Compute û, Û by running the Piggyback PDHG iterations (6.1)-(6.2) to convergence.
4. Update λk = λk−1 − ζDλL(λk), with DλL from (6.3).
5. Set ζ = νζ.

end while

It is worth noting that we are optimizing only on the parameter λ in front of the fidelity term. For
the TV case and since this algorithm is applied to Level 3 with constant parameters, only the balance
between the two energy terms is relevant and finding an optimal λL is equivalent to finding an optimal
αL = 1/λL, which can then be assembled over all L into a weight ω for Level 2 of either (LS)TV−Fidω
or (LS)TV ω . In the TGV setting, optimizing only over one parameter imposes a restriction, but we have
chosen to do so to keep the simple approach of Algorithm 1 and avoid more complicated behaviors of the
costs when varying both α0 and α1 (or, equivalently, λ together with either α0 and α1).

6.2. Effect of parameter discontinuities in Level 2 of (LS)TVω , (LS)TVωε and (LS)TV−Fidω .

In Figure 2, we present an example using large regularization parameters and a symmetric input image
to demonstrate the effect of parameter discontinuities in Level 2 of the schemes (LS)TVω , (LS)TVωε and
(LS)TV−Fidω . In the weighted-TV result, a jump in the weight results in a spurious discontinuity in the
resulting image. Mollifying the weight smooths the transition slightly, and it shifts it to the side with
lower weight. Using a weighted fidelity term does not introduce discontinuities besides those present in
the input, but still creates visible artifacts near them.
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Figure 2. Oversmoothed denoising with a sharp change of weight and schemes corre-
sponding to Level 2 of (LS)TVω , (LS)TVωε , and (LS)TV−Fidω , from left to right. Top
row: weights ω(x) = ω(x1). Bottom row: results with each denoising scheme and the
corresponding (not optimal) weight.

6.3. Dyadic subdivision approach to Level 1.

Algorithm 2 Numerical approach to Level 1
Input: Noisy image uη, clean (training) image uc, subdivision tolerance ρ.
1. Set ` = 0 and L= {(0, 1)2}.
2. Compute the constant optimal ω(0,1)2 ≡ λ(0,1)2 or ω(0,1)2 ≡ 1/λ(0,1)2 using the numerical approach
to Level 3 described in Section 6.1. Store the cost at the minimum as c(0,1)2 .
while ` < `max do
for all L ∈ L with side(L) = 2−` do
2. Denote by Li for i = 1, . . . , 4 the cells obtained by one dyadic subdivision of L.
for i = 1, . . . , 4 do
3. Compute λLi with the approach to Level 3 of Algorithm 1, store local minimal training cost
as CLi := ‖uc − uLi‖2L2(Li).

end for
if CL1 + CL2 + CL3 + CL4 < ρCL (cf. (3.20)) then

4. Replace L by
(
L\ {L}

)⋃4
i=1{Li}.

end if
end for
5. Set ωL to be ωL = λL or ωL = 1/λL on each L ∈ L.
6. Set ` = `+ 1.

end while
7. Compute uL with ωL and the numerical approach of Section 6.1 to Level 2 of (LS)TGV−Fidω or
(LS)TV−Fidω .

In Algorithm 2, we summarize our approach to numerically treat Level 1. We remark that in com-
parison with the original formulations (LS)TVω and (LS)TGVω as formulated in the introduction, we do
not search the entire space of partitions (which would be numerically intractable) and instead work by
subdivision as in Example 3.13. This means that for any given cell L, we make a local decision whether
to subdivide it or not, based on the training costs arising from it before and after subdividing it in four
new cells. When performing this subdivision, the parameter from the original cell is used as initialization
for the optimization on the newly created ones. Even though this approach strongly restricts the number
of possible partitions considered, it still manages to achieve reasonable performance in practice. On a
heuristic level, this indicates that if splitting one dyadic square once to add more detail on the parameter
does not lead to better performance, then in most cases it is also not advantageous to consider further
finer subdivisions of the same square.
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6.4. Numerical examples with the complete schemes (LS)TV−Fidω and (LS)TGV−Fidω .

In Figures 3, 4, 5, and 6, we present some illustrative examples resulting from the application of
Algorithm 2 with `max = 4 to several images, for both TV and TGV regularization and optimizing for
one adaptive parameter in the fidelity term, which is also shown along with the partitions overlaid on
the noisy input images. In these, we generally see that the adapted fidelity parameter λ is higher in
areas with finer details. Peak signal to noise ratios and SSIM values for each case are summarized in
Table 1. In all cases, TGV with adaptive fidelity produces the best results by these metrics, but there
are several instances where the gains are very marginal or there are even ties with the corresponding
adaptive TV results. Nevertheless, it may be argued that even in these cases the TGV results are more
visually appealing due to reduced staircasing.

For the simple example of Figure 3, some more direct observations can be made. In it, we see that
the spatially adaptive results manage to better preserve the fine structures inside the main object, while
TGV greatly diminishes staircasing in regions where the original image is nearly linear. Observe that
unlike the fine structures, the boundaries of the main object consisting of a sharp discontinuity along an
interface with low curvature do not necessarily force further subdivision, as expected for TV or TGV
regularization.

The synthetic image used in Figure 3 was created by the authors for this article. The lighthouse and
parrot examples in Figures 4 and 6 have been cropped and converted to grayscale from images in the
Kodak Lossless Image Suite. The cameraman image of Figure 5 is very widely used, but to our knowledge
its origin is not quite clear.

Figure 3. Synthetic example. Top row: Clean and noisy images uc, uη. Middle row, left
to right: TV result with global parameter, partition and spatially-dependent λ arising
from Algorithm 2, and corresponding result with weighted fidelity. Bottom row: TGV
results, same order as in the middle row and with α0 = 1, α1 = 10.
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Figure 4. Lighthouse example. Top row: Clean and noisy images uc, uη. Middle row,
left to right: TV result with global parameter, partition and spatially-dependent λ arising
from Algorithm 2, and corresponding result with weighted fidelity. Bottom row: TGV
results, same order as in the middle row and with α0 = 1, α1 = 2.

Noisy TV global TV adaptive TGV global TGV adaptive
Synthetic 26.05, 0.349 38.74, 0.946 39.41, 0.957 39.02, 0.949 39.80, 0.961
Lighthouse 24.64, 0.496 30.42, 0.853 30.82, 0.886 30.44, 0.855 30.90, 0.890
Cameraman 28.40, 0.642 32.86, 0.893 33.54, 0.925 32.86, 0.893 33.56, 0.925

Parrot 24.67, 0.447 31.86, 0.880 32.37, 0.898 32.10, 0.889 32.72, 0.909
Table 1. PSNR and SSIM values for the examples of Figures 3, 4, 5, and 6.
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